components/openssl/openssl-0.9.8-fips-140/engines/pkcs11/hw_pk11.c
changeset 1587 314c74b881bc
equal deleted inserted replaced
1586:2d3ec080d6a3 1587:314c74b881bc
       
     1 /*
       
     2  * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved.
       
     3  *
       
     4  */
       
     5 
       
     6 /* crypto/engine/hw_pk11.c */
       
     7 /*
       
     8  * This product includes software developed by the OpenSSL Project for
       
     9  * use in the OpenSSL Toolkit (http://www.openssl.org/).
       
    10  *
       
    11  * This project also referenced hw_pkcs11-0.9.7b.patch written by
       
    12  * Afchine Madjlessi.
       
    13  */
       
    14 /*
       
    15  * ====================================================================
       
    16  * Copyright (c) 2000-2001 The OpenSSL Project.  All rights reserved.
       
    17  *
       
    18  * Redistribution and use in source and binary forms, with or without
       
    19  * modification, are permitted provided that the following conditions
       
    20  * are met:
       
    21  *
       
    22  * 1. Redistributions of source code must retain the above copyright
       
    23  *    notice, this list of conditions and the following disclaimer.
       
    24  *
       
    25  * 2. Redistributions in binary form must reproduce the above copyright
       
    26  *    notice, this list of conditions and the following disclaimer in
       
    27  *    the documentation and/or other materials provided with the
       
    28  *    distribution.
       
    29  *
       
    30  * 3. All advertising materials mentioning features or use of this
       
    31  *    software must display the following acknowledgment:
       
    32  *    "This product includes software developed by the OpenSSL Project
       
    33  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
       
    34  *
       
    35  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
       
    36  *    endorse or promote products derived from this software without
       
    37  *    prior written permission. For written permission, please contact
       
    38  *    [email protected].
       
    39  *
       
    40  * 5. Products derived from this software may not be called "OpenSSL"
       
    41  *    nor may "OpenSSL" appear in their names without prior written
       
    42  *    permission of the OpenSSL Project.
       
    43  *
       
    44  * 6. Redistributions of any form whatsoever must retain the following
       
    45  *    acknowledgment:
       
    46  *    "This product includes software developed by the OpenSSL Project
       
    47  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
       
    48  *
       
    49  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
       
    50  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
       
    51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
       
    52  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
       
    53  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
       
    54  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
       
    55  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
       
    56  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
       
    57  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
       
    58  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
       
    59  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
       
    60  * OF THE POSSIBILITY OF SUCH DAMAGE.
       
    61  * ====================================================================
       
    62  *
       
    63  * This product includes cryptographic software written by Eric Young
       
    64  * ([email protected]).  This product includes software written by Tim
       
    65  * Hudson ([email protected]).
       
    66  *
       
    67  */
       
    68 
       
    69 #include <stdio.h>
       
    70 #include <stdlib.h>
       
    71 #include <string.h>
       
    72 #include <sys/types.h>
       
    73 #include <unistd.h>
       
    74 #include <strings.h>
       
    75 
       
    76 #include <openssl/e_os2.h>
       
    77 #include <openssl/crypto.h>
       
    78 #include <openssl/engine.h>
       
    79 #include <openssl/dso.h>
       
    80 #include <openssl/err.h>
       
    81 #include <openssl/bn.h>
       
    82 #include <openssl/md5.h>
       
    83 #include <openssl/pem.h>
       
    84 #ifndef OPENSSL_NO_RSA
       
    85 #include <openssl/rsa.h>
       
    86 #endif
       
    87 #ifndef OPENSSL_NO_DSA
       
    88 #include <openssl/dsa.h>
       
    89 #endif
       
    90 #ifndef OPENSSL_NO_DH
       
    91 #include <openssl/dh.h>
       
    92 #endif
       
    93 #include <openssl/rand.h>
       
    94 #include <openssl/objects.h>
       
    95 #include <openssl/x509.h>
       
    96 #include <openssl/aes.h>
       
    97 #include <cryptlib.h>
       
    98 #include <dlfcn.h>
       
    99 #include <pthread.h>
       
   100 
       
   101 #ifndef OPENSSL_NO_HW
       
   102 #ifndef OPENSSL_NO_HW_PK11
       
   103 
       
   104 /* label for debug messages printed on stderr */
       
   105 #define	PK11_DBG	"PKCS#11 ENGINE DEBUG"
       
   106 /* prints a lot of debug messages on stderr about slot selection process */
       
   107 #undef	DEBUG_SLOT_SELECTION
       
   108 /*
       
   109  * Solaris specific code. See comment at check_hw_mechanisms() for more
       
   110  * information.
       
   111  */
       
   112 #if defined(__SVR4) && defined(__sun)
       
   113 #define	SOLARIS_HW_SLOT_SELECTION
       
   114 #endif
       
   115 
       
   116 #ifdef DEBUG_SLOT_SELECTION
       
   117 #define	DEBUG_SLOT_SEL(...) fprintf(stderr, __VA_ARGS__)
       
   118 #else
       
   119 #define	DEBUG_SLOT_SEL(...)
       
   120 #endif
       
   121 
       
   122 /*
       
   123  * AES counter mode is not supported in the OpenSSL EVP API yet and neither
       
   124  * there are official OIDs for mechanisms based on this mode. With our changes,
       
   125  * an application can define its own EVP calls for AES counter mode and then
       
   126  * it can make use of hardware acceleration through this engine. However, it's
       
   127  * better if we keep AES CTR support code under ifdef's.
       
   128  */
       
   129 #define	SOLARIS_AES_CTR
       
   130 
       
   131 #include <security/cryptoki.h>
       
   132 #include <security/pkcs11.h>
       
   133 #include "hw_pk11.h"
       
   134 #include "hw_pk11_uri.h"
       
   135 
       
   136 #define	PK11_ENGINE_LIB_NAME "PKCS#11 engine"
       
   137 #include "hw_pk11_err.c"
       
   138 
       
   139 #ifdef	SOLARIS_AES_CTR
       
   140 /*
       
   141  * NIDs for AES counter mode that will be defined during the engine
       
   142  * initialization.
       
   143  */
       
   144 int NID_aes_128_ctr = NID_undef;
       
   145 int NID_aes_192_ctr = NID_undef;
       
   146 int NID_aes_256_ctr = NID_undef;
       
   147 #endif	/* SOLARIS_AES_CTR */
       
   148 
       
   149 /*
       
   150  * We use this lock to prevent multiple C_Login()s, guard getpassphrase(),
       
   151  * uri_struct manipulation, and static token info. All of that is used by the
       
   152  * RSA keys by reference feature.
       
   153  */
       
   154 pthread_mutex_t *uri_lock;
       
   155 
       
   156 #ifdef	SOLARIS_HW_SLOT_SELECTION
       
   157 /*
       
   158  * Tables for symmetric ciphers and digest mechs found in the pkcs11_kernel
       
   159  * library. See comment at check_hw_mechanisms() for more information.
       
   160  */
       
   161 int *hw_cnids;
       
   162 int *hw_dnids;
       
   163 #endif	/* SOLARIS_HW_SLOT_SELECTION */
       
   164 
       
   165 /* PKCS#11 session caches and their locks for all operation types */
       
   166 static PK11_CACHE session_cache[OP_MAX];
       
   167 
       
   168 /*
       
   169  * We cache the flags so that we do not have to run C_GetTokenInfo() again when
       
   170  * logging into the token.
       
   171  */
       
   172 CK_FLAGS pubkey_token_flags;
       
   173 
       
   174 /*
       
   175  * As stated in v2.20, 11.7 Object Management Function, in section for
       
   176  * C_FindObjectsInit(), at most one search operation may be active at a given
       
   177  * time in a given session. Therefore, C_Find{,Init,Final}Objects() should be
       
   178  * grouped together to form one atomic search operation. This is already
       
   179  * ensured by the property of unique PKCS#11 session handle used for each
       
   180  * PK11_SESSION object.
       
   181  *
       
   182  * This is however not the biggest concern - maintaining consistency of the
       
   183  * underlying object store is more important. The same section of the spec also
       
   184  * says that one thread can be in the middle of a search operation while another
       
   185  * thread destroys the object matching the search template which would result in
       
   186  * invalid handle returned from the search operation.
       
   187  *
       
   188  * Hence, the following locks are used for both protection of the object stores.
       
   189  * They are also used for active list protection.
       
   190  */
       
   191 pthread_mutex_t *find_lock[OP_MAX] = { NULL };
       
   192 
       
   193 /*
       
   194  * lists of asymmetric key handles which are active (referenced by at least one
       
   195  * PK11_SESSION structure, either held by a thread or present in free_session
       
   196  * list) for given algorithm type
       
   197  */
       
   198 PK11_active *active_list[OP_MAX] = { NULL };
       
   199 
       
   200 /*
       
   201  * Create all secret key objects in a global session so that they are available
       
   202  * to use for other sessions. These other sessions may be opened or closed
       
   203  * without losing the secret key objects.
       
   204  */
       
   205 static CK_SESSION_HANDLE	global_session = CK_INVALID_HANDLE;
       
   206 
       
   207 /* Index for the supported ciphers */
       
   208 enum pk11_cipher_id
       
   209 	{
       
   210 	PK11_DES_CBC,
       
   211 	PK11_DES3_CBC,
       
   212 	PK11_DES_ECB,
       
   213 	PK11_DES3_ECB,
       
   214 	PK11_RC4,
       
   215 	PK11_AES_128_CBC,
       
   216 	PK11_AES_192_CBC,
       
   217 	PK11_AES_256_CBC,
       
   218 	PK11_AES_128_ECB,
       
   219 	PK11_AES_192_ECB,
       
   220 	PK11_AES_256_ECB,
       
   221 	PK11_BLOWFISH_CBC,
       
   222 #ifdef	SOLARIS_AES_CTR
       
   223 	PK11_AES_128_CTR,
       
   224 	PK11_AES_192_CTR,
       
   225 	PK11_AES_256_CTR,
       
   226 #endif	/* SOLARIS_AES_CTR */
       
   227 	PK11_CIPHER_MAX
       
   228 	};
       
   229 
       
   230 /* Index for the supported digests */
       
   231 enum pk11_digest_id
       
   232 	{
       
   233 	PK11_MD5,
       
   234 	PK11_SHA1,
       
   235 	PK11_SHA224,
       
   236 	PK11_SHA256,
       
   237 	PK11_SHA384,
       
   238 	PK11_SHA512,
       
   239 	PK11_DIGEST_MAX
       
   240 	};
       
   241 
       
   242 typedef struct PK11_CIPHER_st
       
   243 	{
       
   244 	enum pk11_cipher_id	id;
       
   245 	int			nid;
       
   246 	int			iv_len;
       
   247 	int			min_key_len;
       
   248 	int			max_key_len;
       
   249 	CK_KEY_TYPE		key_type;
       
   250 	CK_MECHANISM_TYPE	mech_type;
       
   251 	} PK11_CIPHER;
       
   252 
       
   253 typedef struct PK11_DIGEST_st
       
   254 	{
       
   255 	enum pk11_digest_id	id;
       
   256 	int			nid;
       
   257 	CK_MECHANISM_TYPE	mech_type;
       
   258 	} PK11_DIGEST;
       
   259 
       
   260 /* ENGINE level stuff */
       
   261 static int pk11_init(ENGINE *e);
       
   262 static int pk11_library_init(ENGINE *e);
       
   263 static int pk11_finish(ENGINE *e);
       
   264 static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)());
       
   265 static int pk11_destroy(ENGINE *e);
       
   266 
       
   267 /* RAND stuff */
       
   268 static void pk11_rand_seed(const void *buf, int num);
       
   269 static void pk11_rand_add(const void *buf, int num, double add_entropy);
       
   270 static void pk11_rand_cleanup(void);
       
   271 static int pk11_rand_bytes(unsigned char *buf, int num);
       
   272 static int pk11_rand_status(void);
       
   273 
       
   274 /* These functions are also used in other files */
       
   275 PK11_SESSION *pk11_get_session(PK11_OPTYPE optype);
       
   276 void pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype);
       
   277 
       
   278 /* active list manipulation functions used in this file */
       
   279 extern int pk11_active_delete(CK_OBJECT_HANDLE h, PK11_OPTYPE type);
       
   280 extern void pk11_free_active_list(PK11_OPTYPE type);
       
   281 
       
   282 #ifndef OPENSSL_NO_RSA
       
   283 int pk11_destroy_rsa_key_objects(PK11_SESSION *session);
       
   284 int pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
       
   285 int pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
       
   286 #endif
       
   287 #ifndef OPENSSL_NO_DSA
       
   288 int pk11_destroy_dsa_key_objects(PK11_SESSION *session);
       
   289 int pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock);
       
   290 int pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock);
       
   291 #endif
       
   292 #ifndef OPENSSL_NO_DH
       
   293 int pk11_destroy_dh_key_objects(PK11_SESSION *session);
       
   294 int pk11_destroy_dh_object(PK11_SESSION *session, CK_BBOOL uselock);
       
   295 #endif
       
   296 
       
   297 /* Local helper functions */
       
   298 static int pk11_free_all_sessions(void);
       
   299 static int pk11_free_session_list(PK11_OPTYPE optype);
       
   300 static int pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype);
       
   301 static int pk11_destroy_cipher_key_objects(PK11_SESSION *session);
       
   302 static int pk11_destroy_object(CK_SESSION_HANDLE handle, CK_OBJECT_HANDLE oh,
       
   303     CK_BBOOL persistent);
       
   304 static const char *get_PK11_LIBNAME(void);
       
   305 static void free_PK11_LIBNAME(void);
       
   306 static long set_PK11_LIBNAME(const char *name);
       
   307 
       
   308 /* Symmetric cipher and digest support functions */
       
   309 static int cipher_nid_to_pk11(int nid);
       
   310 #ifdef	SOLARIS_AES_CTR
       
   311 static int pk11_add_NID(char *sn, char *ln);
       
   312 static int pk11_add_aes_ctr_NIDs(void);
       
   313 #endif	/* SOLARIS_AES_CTR */
       
   314 static int pk11_usable_ciphers(const int **nids);
       
   315 static int pk11_usable_digests(const int **nids);
       
   316 static int pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
       
   317 	const unsigned char *iv, int enc);
       
   318 static int pk11_cipher_final(PK11_SESSION *sp);
       
   319 static int pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
       
   320 	const unsigned char *in, unsigned int inl);
       
   321 static int pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx);
       
   322 static int pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
       
   323 	const int **nids, int nid);
       
   324 static int pk11_engine_digests(ENGINE *e, const EVP_MD **digest,
       
   325 	const int **nids, int nid);
       
   326 static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx,
       
   327 	const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp);
       
   328 static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key,
       
   329 	int key_len);
       
   330 static int md_nid_to_pk11(int nid);
       
   331 static int pk11_digest_init(EVP_MD_CTX *ctx);
       
   332 static int pk11_digest_update(EVP_MD_CTX *ctx, const void *data,
       
   333 	size_t count);
       
   334 static int pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md);
       
   335 static int pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from);
       
   336 static int pk11_digest_cleanup(EVP_MD_CTX *ctx);
       
   337 
       
   338 static int pk11_choose_slots(int *any_slot_found);
       
   339 static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist,
       
   340     CK_SLOT_ID current_slot, int *current_slot_n_cipher,
       
   341     int *local_cipher_nids);
       
   342 static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist,
       
   343     CK_SLOT_ID current_slot, int *current_slot_n_digest,
       
   344     int *local_digest_nids);
       
   345 static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR, int slot_id,
       
   346     int *current_slot_n_cipher, int *local_cipher_nids,
       
   347     PK11_CIPHER *cipher);
       
   348 static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id,
       
   349     int *current_slot_n_digest, int *local_digest_nids,
       
   350     PK11_DIGEST *digest);
       
   351 
       
   352 static int pk11_init_all_locks(void);
       
   353 static void pk11_free_all_locks(void);
       
   354 
       
   355 #ifdef	SOLARIS_HW_SLOT_SELECTION
       
   356 static int check_hw_mechanisms(void);
       
   357 static int nid_in_table(int nid, int *nid_table);
       
   358 #endif	/* SOLARIS_HW_SLOT_SELECTION */
       
   359 
       
   360 #define	TRY_OBJ_DESTROY(sp, obj_hdl, retval, uselock, alg_type)	\
       
   361 	{								\
       
   362 	if (uselock)							\
       
   363 		LOCK_OBJSTORE(alg_type);				\
       
   364 	if (pk11_active_delete(obj_hdl, alg_type) == 1)			\
       
   365 		{							\
       
   366 		retval = pk11_destroy_object(sp->session, obj_hdl,	\
       
   367 		    sp->persistent);					\
       
   368 		}							\
       
   369 	if (uselock)							\
       
   370 		UNLOCK_OBJSTORE(alg_type);				\
       
   371 	}
       
   372 
       
   373 static int cipher_nids[PK11_CIPHER_MAX];
       
   374 static int digest_nids[PK11_DIGEST_MAX];
       
   375 static int cipher_count		= 0;
       
   376 static int digest_count		= 0;
       
   377 static CK_BBOOL pk11_have_rsa	= CK_FALSE;
       
   378 static CK_BBOOL pk11_have_dsa	= CK_FALSE;
       
   379 static CK_BBOOL pk11_have_dh	= CK_FALSE;
       
   380 static CK_BBOOL pk11_have_random = CK_FALSE;
       
   381 
       
   382 /*
       
   383  * Static list of ciphers.
       
   384  * Note, that ciphers array is indexed by member PK11_CIPHER.id,
       
   385  * thus ciphers[i].id == i
       
   386  * Rows must be kept in sync with enum pk11_cipher_id.
       
   387  */
       
   388 static PK11_CIPHER ciphers[] =
       
   389 	{
       
   390 	{ PK11_DES_CBC,		NID_des_cbc,		8,	 8,   8,
       
   391 		CKK_DES,	CKM_DES_CBC, },
       
   392 	{ PK11_DES3_CBC,	NID_des_ede3_cbc,	8,	24,  24,
       
   393 		CKK_DES3,	CKM_DES3_CBC, },
       
   394 	{ PK11_DES_ECB,		NID_des_ecb,		0,	 8,   8,
       
   395 		CKK_DES,	CKM_DES_ECB, },
       
   396 	{ PK11_DES3_ECB,	NID_des_ede3_ecb,	0,	24,  24,
       
   397 		CKK_DES3,	CKM_DES3_ECB, },
       
   398 	{ PK11_RC4,		NID_rc4,		0,	16, 256,
       
   399 		CKK_RC4,	CKM_RC4, },
       
   400 	{ PK11_AES_128_CBC,	NID_aes_128_cbc,	16,	16,  16,
       
   401 		CKK_AES,	CKM_AES_CBC, },
       
   402 	{ PK11_AES_192_CBC,	NID_aes_192_cbc,	16,	24,  24,
       
   403 		CKK_AES,	CKM_AES_CBC, },
       
   404 	{ PK11_AES_256_CBC,	NID_aes_256_cbc,	16,	32,  32,
       
   405 		CKK_AES,	CKM_AES_CBC, },
       
   406 	{ PK11_AES_128_ECB,	NID_aes_128_ecb,	0,	16,  16,
       
   407 		CKK_AES,	CKM_AES_ECB, },
       
   408 	{ PK11_AES_192_ECB,	NID_aes_192_ecb,	0,	24,  24,
       
   409 		CKK_AES,	CKM_AES_ECB, },
       
   410 	{ PK11_AES_256_ECB,	NID_aes_256_ecb,	0,	32,  32,
       
   411 		CKK_AES,	CKM_AES_ECB, },
       
   412 	{ PK11_BLOWFISH_CBC,	NID_bf_cbc,		8,	16,  16,
       
   413 		CKK_BLOWFISH,	CKM_BLOWFISH_CBC, },
       
   414 #ifdef	SOLARIS_AES_CTR
       
   415 	/* we don't know the correct NIDs until the engine is initialized */
       
   416 	{ PK11_AES_128_CTR,	NID_undef,		16,	16,  16,
       
   417 		CKK_AES,	CKM_AES_CTR, },
       
   418 	{ PK11_AES_192_CTR,	NID_undef,		16,	24,  24,
       
   419 		CKK_AES,	CKM_AES_CTR, },
       
   420 	{ PK11_AES_256_CTR,	NID_undef,		16,	32,  32,
       
   421 		CKK_AES,	CKM_AES_CTR, },
       
   422 #endif	/* SOLARIS_AES_CTR */
       
   423 	};
       
   424 
       
   425 /*
       
   426  * Static list of digests.
       
   427  * Note, that digests array is indexed by member PK11_DIGEST.id,
       
   428  * thus digests[i].id == i
       
   429  * Rows must be kept in sync with enum pk11_digest_id.
       
   430  */
       
   431 static PK11_DIGEST digests[] =
       
   432 	{
       
   433 	{PK11_MD5,	NID_md5,	CKM_MD5, },
       
   434 	{PK11_SHA1,	NID_sha1,	CKM_SHA_1, },
       
   435 	{PK11_SHA224,	NID_sha224,	CKM_SHA224, },
       
   436 	{PK11_SHA256,	NID_sha256,	CKM_SHA256, },
       
   437 	{PK11_SHA384,	NID_sha384,	CKM_SHA384, },
       
   438 	{PK11_SHA512,	NID_sha512,	CKM_SHA512, },
       
   439 	{0,		NID_undef,	0xFFFF, },
       
   440 	};
       
   441 
       
   442 /*
       
   443  * Structure to be used for the cipher_data/md_data in
       
   444  * EVP_CIPHER_CTX/EVP_MD_CTX structures in order to use the same pk11
       
   445  * session in multiple cipher_update calls
       
   446  */
       
   447 typedef struct PK11_CIPHER_STATE_st
       
   448 	{
       
   449 	PK11_SESSION	*sp;
       
   450 	} PK11_CIPHER_STATE;
       
   451 
       
   452 
       
   453 /*
       
   454  * libcrypto EVP stuff - this is how we get wired to EVP so the engine gets
       
   455  * called when libcrypto requests a cipher NID.
       
   456  *
       
   457  * Note how the PK11_CIPHER_STATE is used here.
       
   458  */
       
   459 
       
   460 /* DES CBC EVP */
       
   461 static const EVP_CIPHER pk11_des_cbc =
       
   462 	{
       
   463 	NID_des_cbc,
       
   464 	8, 8, 8,
       
   465 	EVP_CIPH_CBC_MODE,
       
   466 	pk11_cipher_init,
       
   467 	pk11_cipher_do_cipher,
       
   468 	pk11_cipher_cleanup,
       
   469 	sizeof (PK11_CIPHER_STATE),
       
   470 	EVP_CIPHER_set_asn1_iv,
       
   471 	EVP_CIPHER_get_asn1_iv,
       
   472 	NULL
       
   473 	};
       
   474 
       
   475 /* 3DES CBC EVP */
       
   476 static const EVP_CIPHER pk11_3des_cbc =
       
   477 	{
       
   478 	NID_des_ede3_cbc,
       
   479 	8, 24, 8,
       
   480 	EVP_CIPH_CBC_MODE,
       
   481 	pk11_cipher_init,
       
   482 	pk11_cipher_do_cipher,
       
   483 	pk11_cipher_cleanup,
       
   484 	sizeof (PK11_CIPHER_STATE),
       
   485 	EVP_CIPHER_set_asn1_iv,
       
   486 	EVP_CIPHER_get_asn1_iv,
       
   487 	NULL
       
   488 	};
       
   489 
       
   490 /*
       
   491  * ECB modes don't use an Initial Vector so that's why set_asn1_parameters and
       
   492  * get_asn1_parameters fields are set to NULL.
       
   493  */
       
   494 static const EVP_CIPHER pk11_des_ecb =
       
   495 	{
       
   496 	NID_des_ecb,
       
   497 	8, 8, 8,
       
   498 	EVP_CIPH_ECB_MODE,
       
   499 	pk11_cipher_init,
       
   500 	pk11_cipher_do_cipher,
       
   501 	pk11_cipher_cleanup,
       
   502 	sizeof (PK11_CIPHER_STATE),
       
   503 	NULL,
       
   504 	NULL,
       
   505 	NULL
       
   506 	};
       
   507 
       
   508 static const EVP_CIPHER pk11_3des_ecb =
       
   509 	{
       
   510 	NID_des_ede3_ecb,
       
   511 	8, 24, 8,
       
   512 	EVP_CIPH_ECB_MODE,
       
   513 	pk11_cipher_init,
       
   514 	pk11_cipher_do_cipher,
       
   515 	pk11_cipher_cleanup,
       
   516 	sizeof (PK11_CIPHER_STATE),
       
   517 	NULL,
       
   518 	NULL,
       
   519 	NULL
       
   520 	};
       
   521 
       
   522 
       
   523 static const EVP_CIPHER pk11_aes_128_cbc =
       
   524 	{
       
   525 	NID_aes_128_cbc,
       
   526 	16, 16, 16,
       
   527 	EVP_CIPH_CBC_MODE,
       
   528 	pk11_cipher_init,
       
   529 	pk11_cipher_do_cipher,
       
   530 	pk11_cipher_cleanup,
       
   531 	sizeof (PK11_CIPHER_STATE),
       
   532 	EVP_CIPHER_set_asn1_iv,
       
   533 	EVP_CIPHER_get_asn1_iv,
       
   534 	NULL
       
   535 	};
       
   536 
       
   537 static const EVP_CIPHER pk11_aes_192_cbc =
       
   538 	{
       
   539 	NID_aes_192_cbc,
       
   540 	16, 24, 16,
       
   541 	EVP_CIPH_CBC_MODE,
       
   542 	pk11_cipher_init,
       
   543 	pk11_cipher_do_cipher,
       
   544 	pk11_cipher_cleanup,
       
   545 	sizeof (PK11_CIPHER_STATE),
       
   546 	EVP_CIPHER_set_asn1_iv,
       
   547 	EVP_CIPHER_get_asn1_iv,
       
   548 	NULL
       
   549 	};
       
   550 
       
   551 static const EVP_CIPHER pk11_aes_256_cbc =
       
   552 	{
       
   553 	NID_aes_256_cbc,
       
   554 	16, 32, 16,
       
   555 	EVP_CIPH_CBC_MODE,
       
   556 	pk11_cipher_init,
       
   557 	pk11_cipher_do_cipher,
       
   558 	pk11_cipher_cleanup,
       
   559 	sizeof (PK11_CIPHER_STATE),
       
   560 	EVP_CIPHER_set_asn1_iv,
       
   561 	EVP_CIPHER_get_asn1_iv,
       
   562 	NULL
       
   563 	};
       
   564 
       
   565 /*
       
   566  * ECB modes don't use IV so that's why set_asn1_parameters and
       
   567  * get_asn1_parameters are set to NULL.
       
   568  */
       
   569 static const EVP_CIPHER pk11_aes_128_ecb =
       
   570 	{
       
   571 	NID_aes_128_ecb,
       
   572 	16, 16, 0,
       
   573 	EVP_CIPH_ECB_MODE,
       
   574 	pk11_cipher_init,
       
   575 	pk11_cipher_do_cipher,
       
   576 	pk11_cipher_cleanup,
       
   577 	sizeof (PK11_CIPHER_STATE),
       
   578 	NULL,
       
   579 	NULL,
       
   580 	NULL
       
   581 	};
       
   582 
       
   583 static const EVP_CIPHER pk11_aes_192_ecb =
       
   584 	{
       
   585 	NID_aes_192_ecb,
       
   586 	16, 24, 0,
       
   587 	EVP_CIPH_ECB_MODE,
       
   588 	pk11_cipher_init,
       
   589 	pk11_cipher_do_cipher,
       
   590 	pk11_cipher_cleanup,
       
   591 	sizeof (PK11_CIPHER_STATE),
       
   592 	NULL,
       
   593 	NULL,
       
   594 	NULL
       
   595 	};
       
   596 
       
   597 static const EVP_CIPHER pk11_aes_256_ecb =
       
   598 	{
       
   599 	NID_aes_256_ecb,
       
   600 	16, 32, 0,
       
   601 	EVP_CIPH_ECB_MODE,
       
   602 	pk11_cipher_init,
       
   603 	pk11_cipher_do_cipher,
       
   604 	pk11_cipher_cleanup,
       
   605 	sizeof (PK11_CIPHER_STATE),
       
   606 	NULL,
       
   607 	NULL,
       
   608 	NULL
       
   609 	};
       
   610 
       
   611 #ifdef	SOLARIS_AES_CTR
       
   612 /*
       
   613  * NID_undef's will be changed to the AES counter mode NIDs as soon they are
       
   614  * created in pk11_library_init(). Note that the need to change these structures
       
   615  * is the reason why we don't define them with the const keyword.
       
   616  */
       
   617 static EVP_CIPHER pk11_aes_128_ctr =
       
   618 	{
       
   619 	NID_undef,
       
   620 	16, 16, 16,
       
   621 	EVP_CIPH_CBC_MODE,
       
   622 	pk11_cipher_init,
       
   623 	pk11_cipher_do_cipher,
       
   624 	pk11_cipher_cleanup,
       
   625 	sizeof (PK11_CIPHER_STATE),
       
   626 	EVP_CIPHER_set_asn1_iv,
       
   627 	EVP_CIPHER_get_asn1_iv,
       
   628 	NULL
       
   629 	};
       
   630 
       
   631 static EVP_CIPHER pk11_aes_192_ctr =
       
   632 	{
       
   633 	NID_undef,
       
   634 	16, 24, 16,
       
   635 	EVP_CIPH_CBC_MODE,
       
   636 	pk11_cipher_init,
       
   637 	pk11_cipher_do_cipher,
       
   638 	pk11_cipher_cleanup,
       
   639 	sizeof (PK11_CIPHER_STATE),
       
   640 	EVP_CIPHER_set_asn1_iv,
       
   641 	EVP_CIPHER_get_asn1_iv,
       
   642 	NULL
       
   643 	};
       
   644 
       
   645 static EVP_CIPHER pk11_aes_256_ctr =
       
   646 	{
       
   647 	NID_undef,
       
   648 	16, 32, 16,
       
   649 	EVP_CIPH_CBC_MODE,
       
   650 	pk11_cipher_init,
       
   651 	pk11_cipher_do_cipher,
       
   652 	pk11_cipher_cleanup,
       
   653 	sizeof (PK11_CIPHER_STATE),
       
   654 	EVP_CIPHER_set_asn1_iv,
       
   655 	EVP_CIPHER_get_asn1_iv,
       
   656 	NULL
       
   657 	};
       
   658 #endif	/* SOLARIS_AES_CTR */
       
   659 
       
   660 static const EVP_CIPHER pk11_bf_cbc =
       
   661 	{
       
   662 	NID_bf_cbc,
       
   663 	8, 16, 8,
       
   664 	EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CBC_MODE,
       
   665 	pk11_cipher_init,
       
   666 	pk11_cipher_do_cipher,
       
   667 	pk11_cipher_cleanup,
       
   668 	sizeof (PK11_CIPHER_STATE),
       
   669 	EVP_CIPHER_set_asn1_iv,
       
   670 	EVP_CIPHER_get_asn1_iv,
       
   671 	NULL
       
   672 	};
       
   673 
       
   674 static const EVP_CIPHER pk11_rc4 =
       
   675 	{
       
   676 	NID_rc4,
       
   677 	1, 16, 0,
       
   678 	EVP_CIPH_VARIABLE_LENGTH,
       
   679 	pk11_cipher_init,
       
   680 	pk11_cipher_do_cipher,
       
   681 	pk11_cipher_cleanup,
       
   682 	sizeof (PK11_CIPHER_STATE),
       
   683 	NULL,
       
   684 	NULL,
       
   685 	NULL
       
   686 	};
       
   687 
       
   688 static const EVP_MD pk11_md5 =
       
   689 	{
       
   690 	NID_md5,
       
   691 	NID_md5WithRSAEncryption,
       
   692 	MD5_DIGEST_LENGTH,
       
   693 	0,
       
   694 	pk11_digest_init,
       
   695 	pk11_digest_update,
       
   696 	pk11_digest_final,
       
   697 	pk11_digest_copy,
       
   698 	pk11_digest_cleanup,
       
   699 	EVP_PKEY_RSA_method,
       
   700 	MD5_CBLOCK,
       
   701 	sizeof (PK11_CIPHER_STATE),
       
   702 	};
       
   703 
       
   704 static const EVP_MD pk11_sha1 =
       
   705 	{
       
   706 	NID_sha1,
       
   707 	NID_sha1WithRSAEncryption,
       
   708 	SHA_DIGEST_LENGTH,
       
   709 	0,
       
   710 	pk11_digest_init,
       
   711 	pk11_digest_update,
       
   712 	pk11_digest_final,
       
   713 	pk11_digest_copy,
       
   714 	pk11_digest_cleanup,
       
   715 	EVP_PKEY_RSA_method,
       
   716 	SHA_CBLOCK,
       
   717 	sizeof (PK11_CIPHER_STATE),
       
   718 	};
       
   719 
       
   720 static const EVP_MD pk11_sha224 =
       
   721 	{
       
   722 	NID_sha224,
       
   723 	NID_sha224WithRSAEncryption,
       
   724 	SHA224_DIGEST_LENGTH,
       
   725 	0,
       
   726 	pk11_digest_init,
       
   727 	pk11_digest_update,
       
   728 	pk11_digest_final,
       
   729 	pk11_digest_copy,
       
   730 	pk11_digest_cleanup,
       
   731 	EVP_PKEY_RSA_method,
       
   732 	/* SHA-224 uses the same cblock size as SHA-256 */
       
   733 	SHA256_CBLOCK,
       
   734 	sizeof (PK11_CIPHER_STATE),
       
   735 	};
       
   736 
       
   737 static const EVP_MD pk11_sha256 =
       
   738 	{
       
   739 	NID_sha256,
       
   740 	NID_sha256WithRSAEncryption,
       
   741 	SHA256_DIGEST_LENGTH,
       
   742 	0,
       
   743 	pk11_digest_init,
       
   744 	pk11_digest_update,
       
   745 	pk11_digest_final,
       
   746 	pk11_digest_copy,
       
   747 	pk11_digest_cleanup,
       
   748 	EVP_PKEY_RSA_method,
       
   749 	SHA256_CBLOCK,
       
   750 	sizeof (PK11_CIPHER_STATE),
       
   751 	};
       
   752 
       
   753 static const EVP_MD pk11_sha384 =
       
   754 	{
       
   755 	NID_sha384,
       
   756 	NID_sha384WithRSAEncryption,
       
   757 	SHA384_DIGEST_LENGTH,
       
   758 	0,
       
   759 	pk11_digest_init,
       
   760 	pk11_digest_update,
       
   761 	pk11_digest_final,
       
   762 	pk11_digest_copy,
       
   763 	pk11_digest_cleanup,
       
   764 	EVP_PKEY_RSA_method,
       
   765 	/* SHA-384 uses the same cblock size as SHA-512 */
       
   766 	SHA512_CBLOCK,
       
   767 	sizeof (PK11_CIPHER_STATE),
       
   768 	};
       
   769 
       
   770 static const EVP_MD pk11_sha512 =
       
   771 	{
       
   772 	NID_sha512,
       
   773 	NID_sha512WithRSAEncryption,
       
   774 	SHA512_DIGEST_LENGTH,
       
   775 	0,
       
   776 	pk11_digest_init,
       
   777 	pk11_digest_update,
       
   778 	pk11_digest_final,
       
   779 	pk11_digest_copy,
       
   780 	pk11_digest_cleanup,
       
   781 	EVP_PKEY_RSA_method,
       
   782 	SHA512_CBLOCK,
       
   783 	sizeof (PK11_CIPHER_STATE),
       
   784 	};
       
   785 
       
   786 /*
       
   787  * Initialization function. Sets up various PKCS#11 library components.
       
   788  * The definitions for control commands specific to this engine
       
   789  */
       
   790 #define	PK11_CMD_SO_PATH		ENGINE_CMD_BASE
       
   791 static const ENGINE_CMD_DEFN pk11_cmd_defns[] =
       
   792 	{
       
   793 		{
       
   794 		PK11_CMD_SO_PATH,
       
   795 		"SO_PATH",
       
   796 		"Specifies the path to the 'pkcs#11' shared library",
       
   797 		ENGINE_CMD_FLAG_STRING
       
   798 		},
       
   799 		{0, NULL, NULL, 0}
       
   800 	};
       
   801 
       
   802 
       
   803 static RAND_METHOD pk11_random =
       
   804 	{
       
   805 	pk11_rand_seed,
       
   806 	pk11_rand_bytes,
       
   807 	pk11_rand_cleanup,
       
   808 	pk11_rand_add,
       
   809 	pk11_rand_bytes,
       
   810 	pk11_rand_status
       
   811 	};
       
   812 
       
   813 
       
   814 /* Constants used when creating the ENGINE */
       
   815 static const char *engine_pk11_id = "pkcs11";
       
   816 static const char *engine_pk11_name = "PKCS #11 engine support";
       
   817 
       
   818 CK_FUNCTION_LIST_PTR pFuncList = NULL;
       
   819 static const char PK11_GET_FUNCTION_LIST[] = "C_GetFunctionList";
       
   820 
       
   821 /*
       
   822  * This is a static string constant for the DSO file name and the function
       
   823  * symbol names to bind to. We set it in the Configure script based on whether
       
   824  * this is 32 or 64 bit build.
       
   825  */
       
   826 static const char def_PK11_LIBNAME[] = PK11_LIB_LOCATION;
       
   827 
       
   828 static CK_BBOOL pk11_true = CK_TRUE;
       
   829 static CK_BBOOL pk11_false = CK_FALSE;
       
   830 /* Needed in hw_pk11_pub.c as well so that's why it is not static. */
       
   831 CK_SLOT_ID pubkey_SLOTID = 0;
       
   832 static CK_SLOT_ID rand_SLOTID = 0;
       
   833 static CK_SLOT_ID SLOTID = 0;
       
   834 static CK_BBOOL pk11_library_initialized = CK_FALSE;
       
   835 static CK_BBOOL pk11_atfork_initialized = CK_FALSE;
       
   836 static int pk11_pid = 0;
       
   837 
       
   838 static DSO *pk11_dso = NULL;
       
   839 
       
   840 /* allocate and initialize all locks used by the engine itself */
       
   841 static int pk11_init_all_locks(void)
       
   842 	{
       
   843 	int type;
       
   844 
       
   845 #ifndef OPENSSL_NO_RSA
       
   846 	find_lock[OP_RSA] = OPENSSL_malloc(sizeof (pthread_mutex_t));
       
   847 	if (find_lock[OP_RSA] == NULL)
       
   848 		goto malloc_err;
       
   849 	(void) pthread_mutex_init(find_lock[OP_RSA], NULL);
       
   850 #endif /* OPENSSL_NO_RSA */
       
   851 
       
   852 	if ((uri_lock = OPENSSL_malloc(sizeof (pthread_mutex_t))) == NULL)
       
   853 		goto malloc_err;
       
   854 	(void) pthread_mutex_init(uri_lock, NULL);
       
   855 
       
   856 #ifndef OPENSSL_NO_DSA
       
   857 	find_lock[OP_DSA] = OPENSSL_malloc(sizeof (pthread_mutex_t));
       
   858 	if (find_lock[OP_DSA] == NULL)
       
   859 		goto malloc_err;
       
   860 	(void) pthread_mutex_init(find_lock[OP_DSA], NULL);
       
   861 #endif /* OPENSSL_NO_DSA */
       
   862 
       
   863 #ifndef OPENSSL_NO_DH
       
   864 	find_lock[OP_DH] = OPENSSL_malloc(sizeof (pthread_mutex_t));
       
   865 	if (find_lock[OP_DH] == NULL)
       
   866 		goto malloc_err;
       
   867 	(void) pthread_mutex_init(find_lock[OP_DH], NULL);
       
   868 #endif /* OPENSSL_NO_DH */
       
   869 
       
   870 	for (type = 0; type < OP_MAX; type++)
       
   871 		{
       
   872 		session_cache[type].lock =
       
   873 		    OPENSSL_malloc(sizeof (pthread_mutex_t));
       
   874 		if (session_cache[type].lock == NULL)
       
   875 			goto malloc_err;
       
   876 		(void) pthread_mutex_init(session_cache[type].lock, NULL);
       
   877 		}
       
   878 
       
   879 	return (1);
       
   880 
       
   881 malloc_err:
       
   882 	pk11_free_all_locks();
       
   883 	PK11err(PK11_F_INIT_ALL_LOCKS, PK11_R_MALLOC_FAILURE);
       
   884 	return (0);
       
   885 	}
       
   886 
       
   887 static void pk11_free_all_locks(void)
       
   888 	{
       
   889 	int type;
       
   890 
       
   891 #ifndef OPENSSL_NO_RSA
       
   892 	if (find_lock[OP_RSA] != NULL)
       
   893 		{
       
   894 		(void) pthread_mutex_destroy(find_lock[OP_RSA]);
       
   895 		OPENSSL_free(find_lock[OP_RSA]);
       
   896 		find_lock[OP_RSA] = NULL;
       
   897 		}
       
   898 #endif /* OPENSSL_NO_RSA */
       
   899 #ifndef OPENSSL_NO_DSA
       
   900 	if (find_lock[OP_DSA] != NULL)
       
   901 		{
       
   902 		(void) pthread_mutex_destroy(find_lock[OP_DSA]);
       
   903 		OPENSSL_free(find_lock[OP_DSA]);
       
   904 		find_lock[OP_DSA] = NULL;
       
   905 		}
       
   906 #endif /* OPENSSL_NO_DSA */
       
   907 #ifndef OPENSSL_NO_DH
       
   908 	if (find_lock[OP_DH] != NULL)
       
   909 		{
       
   910 		(void) pthread_mutex_destroy(find_lock[OP_DH]);
       
   911 		OPENSSL_free(find_lock[OP_DH]);
       
   912 		find_lock[OP_DH] = NULL;
       
   913 		}
       
   914 #endif /* OPENSSL_NO_DH */
       
   915 
       
   916 	for (type = 0; type < OP_MAX; type++)
       
   917 		{
       
   918 		if (session_cache[type].lock != NULL)
       
   919 			{
       
   920 			(void) pthread_mutex_destroy(session_cache[type].lock);
       
   921 			OPENSSL_free(session_cache[type].lock);
       
   922 			session_cache[type].lock = NULL;
       
   923 			}
       
   924 		}
       
   925 	}
       
   926 
       
   927 /*
       
   928  * This internal function is used by ENGINE_pk11() and "dynamic" ENGINE support.
       
   929  */
       
   930 static int bind_pk11(ENGINE *e)
       
   931 	{
       
   932 #ifndef OPENSSL_NO_RSA
       
   933 	const RSA_METHOD *rsa = NULL;
       
   934 	RSA_METHOD *pk11_rsa = PK11_RSA();
       
   935 #endif	/* OPENSSL_NO_RSA */
       
   936 	if (!pk11_library_initialized)
       
   937 		if (!pk11_library_init(e))
       
   938 			return (0);
       
   939 
       
   940 	if (!ENGINE_set_id(e, engine_pk11_id) ||
       
   941 	    !ENGINE_set_name(e, engine_pk11_name) ||
       
   942 	    !ENGINE_set_ciphers(e, pk11_engine_ciphers) ||
       
   943 	    !ENGINE_set_digests(e, pk11_engine_digests))
       
   944 		return (0);
       
   945 #ifndef OPENSSL_NO_RSA
       
   946 	if (pk11_have_rsa == CK_TRUE)
       
   947 		{
       
   948 		if (!ENGINE_set_RSA(e, PK11_RSA()) ||
       
   949 		    !ENGINE_set_load_privkey_function(e, pk11_load_privkey) ||
       
   950 		    !ENGINE_set_load_pubkey_function(e, pk11_load_pubkey))
       
   951 			return (0);
       
   952 		DEBUG_SLOT_SEL("%s: registered RSA\n", PK11_DBG);
       
   953 		}
       
   954 #endif	/* OPENSSL_NO_RSA */
       
   955 #ifndef OPENSSL_NO_DSA
       
   956 	if (pk11_have_dsa == CK_TRUE)
       
   957 		{
       
   958 		if (!ENGINE_set_DSA(e, PK11_DSA()))
       
   959 			return (0);
       
   960 		DEBUG_SLOT_SEL("%s: registered DSA\n", PK11_DBG);
       
   961 		}
       
   962 #endif	/* OPENSSL_NO_DSA */
       
   963 #ifndef OPENSSL_NO_DH
       
   964 	if (pk11_have_dh == CK_TRUE)
       
   965 		{
       
   966 		if (!ENGINE_set_DH(e, PK11_DH()))
       
   967 			return (0);
       
   968 		DEBUG_SLOT_SEL("%s: registered DH\n", PK11_DBG);
       
   969 		}
       
   970 #endif	/* OPENSSL_NO_DH */
       
   971 	if (pk11_have_random)
       
   972 		{
       
   973 		if (!ENGINE_set_RAND(e, &pk11_random))
       
   974 			return (0);
       
   975 		DEBUG_SLOT_SEL("%s: registered random\n", PK11_DBG);
       
   976 		}
       
   977 	if (!ENGINE_set_init_function(e, pk11_init) ||
       
   978 	    !ENGINE_set_destroy_function(e, pk11_destroy) ||
       
   979 	    !ENGINE_set_finish_function(e, pk11_finish) ||
       
   980 	    !ENGINE_set_ctrl_function(e, pk11_ctrl) ||
       
   981 	    !ENGINE_set_cmd_defns(e, pk11_cmd_defns))
       
   982 		return (0);
       
   983 
       
   984 /*
       
   985  * Apache calls OpenSSL function RSA_blinding_on() once during startup
       
   986  * which in turn calls bn_mod_exp. Since we do not implement bn_mod_exp
       
   987  * here, we wire it back to the OpenSSL software implementation.
       
   988  * Since it is used only once, performance is not a concern.
       
   989  */
       
   990 #ifndef OPENSSL_NO_RSA
       
   991 	rsa = RSA_PKCS1_SSLeay();
       
   992 	pk11_rsa->rsa_mod_exp = rsa->rsa_mod_exp;
       
   993 	pk11_rsa->bn_mod_exp = rsa->bn_mod_exp;
       
   994 #endif	/* OPENSSL_NO_RSA */
       
   995 
       
   996 	/* Ensure the pk11 error handling is set up */
       
   997 	ERR_load_pk11_strings();
       
   998 
       
   999 	return (1);
       
  1000 	}
       
  1001 
       
  1002 /* Dynamic engine support is disabled at a higher level for Solaris */
       
  1003 #ifdef	ENGINE_DYNAMIC_SUPPORT
       
  1004 static int bind_helper(ENGINE *e, const char *id)
       
  1005 	{
       
  1006 	if (id && (strcmp(id, engine_pk11_id) != 0))
       
  1007 		return (0);
       
  1008 
       
  1009 	if (!bind_pk11(e))
       
  1010 		return (0);
       
  1011 
       
  1012 	return (1);
       
  1013 	}
       
  1014 
       
  1015 IMPLEMENT_DYNAMIC_CHECK_FN()
       
  1016 IMPLEMENT_DYNAMIC_BIND_FN(bind_helper)
       
  1017 
       
  1018 #else
       
  1019 static ENGINE *engine_pk11(void)
       
  1020 	{
       
  1021 	ENGINE *ret = ENGINE_new();
       
  1022 
       
  1023 	if (!ret)
       
  1024 		return (NULL);
       
  1025 
       
  1026 	if (!bind_pk11(ret))
       
  1027 		{
       
  1028 		ENGINE_free(ret);
       
  1029 		return (NULL);
       
  1030 		}
       
  1031 
       
  1032 	return (ret);
       
  1033 	}
       
  1034 
       
  1035 void
       
  1036 ENGINE_load_pk11(void)
       
  1037 	{
       
  1038 	ENGINE *e_pk11 = NULL;
       
  1039 
       
  1040 	/*
       
  1041 	 * Do not use dynamic PKCS#11 library on Solaris due to
       
  1042 	 * security reasons. We will link it in statically.
       
  1043 	 */
       
  1044 	/* Attempt to load PKCS#11 library */
       
  1045 	if (!pk11_dso)
       
  1046 		pk11_dso = DSO_load(NULL, get_PK11_LIBNAME(), NULL, 0);
       
  1047 
       
  1048 	if (pk11_dso == NULL)
       
  1049 		{
       
  1050 		PK11err(PK11_F_LOAD, PK11_R_DSO_FAILURE);
       
  1051 		return;
       
  1052 		}
       
  1053 
       
  1054 	e_pk11 = engine_pk11();
       
  1055 	if (!e_pk11)
       
  1056 		{
       
  1057 		DSO_free(pk11_dso);
       
  1058 		pk11_dso = NULL;
       
  1059 		return;
       
  1060 		}
       
  1061 
       
  1062 	/*
       
  1063 	 * At this point, the pk11 shared library is either dynamically
       
  1064 	 * loaded or statically linked in. So, initialize the pk11
       
  1065 	 * library before calling ENGINE_set_default since the latter
       
  1066 	 * needs cipher and digest algorithm information
       
  1067 	 */
       
  1068 	if (!pk11_library_init(e_pk11))
       
  1069 		{
       
  1070 		DSO_free(pk11_dso);
       
  1071 		pk11_dso = NULL;
       
  1072 		ENGINE_free(e_pk11);
       
  1073 		return;
       
  1074 		}
       
  1075 
       
  1076 	ENGINE_add(e_pk11);
       
  1077 
       
  1078 	ENGINE_free(e_pk11);
       
  1079 	ERR_clear_error();
       
  1080 	}
       
  1081 #endif	/* ENGINE_DYNAMIC_SUPPORT */
       
  1082 
       
  1083 /*
       
  1084  * These are the static string constants for the DSO file name and
       
  1085  * the function symbol names to bind to.
       
  1086  */
       
  1087 static const char *PK11_LIBNAME = NULL;
       
  1088 
       
  1089 static const char *get_PK11_LIBNAME(void)
       
  1090 	{
       
  1091 	if (PK11_LIBNAME)
       
  1092 		return (PK11_LIBNAME);
       
  1093 
       
  1094 	return (def_PK11_LIBNAME);
       
  1095 	}
       
  1096 
       
  1097 static void free_PK11_LIBNAME(void)
       
  1098 	{
       
  1099 	if (PK11_LIBNAME)
       
  1100 		OPENSSL_free((void*)PK11_LIBNAME);
       
  1101 
       
  1102 	PK11_LIBNAME = NULL;
       
  1103 	}
       
  1104 
       
  1105 static long set_PK11_LIBNAME(const char *name)
       
  1106 	{
       
  1107 	free_PK11_LIBNAME();
       
  1108 
       
  1109 	return ((PK11_LIBNAME = BUF_strdup(name)) != NULL ? 1 : 0);
       
  1110 	}
       
  1111 
       
  1112 /* acquire all engine specific mutexes before fork */
       
  1113 static void pk11_fork_prepare(void)
       
  1114 	{
       
  1115 	int i;
       
  1116 
       
  1117 	if (!pk11_library_initialized)
       
  1118 		return;
       
  1119 
       
  1120 	LOCK_OBJSTORE(OP_RSA);
       
  1121 	LOCK_OBJSTORE(OP_DSA);
       
  1122 	LOCK_OBJSTORE(OP_DH);
       
  1123 	(void) pthread_mutex_lock(uri_lock);
       
  1124 	for (i = 0; i < OP_MAX; i++)
       
  1125 		{
       
  1126 		(void) pthread_mutex_lock(session_cache[i].lock);
       
  1127 		}
       
  1128 	}
       
  1129 
       
  1130 /* release all engine specific mutexes */
       
  1131 static void pk11_fork_parent(void)
       
  1132 	{
       
  1133 	int i;
       
  1134 
       
  1135 	if (!pk11_library_initialized)
       
  1136 		return;
       
  1137 
       
  1138 	for (i = OP_MAX - 1; i >= 0; i--)
       
  1139 		{
       
  1140 		(void) pthread_mutex_unlock(session_cache[i].lock);
       
  1141 		}
       
  1142 	UNLOCK_OBJSTORE(OP_DH);
       
  1143 	UNLOCK_OBJSTORE(OP_DSA);
       
  1144 	UNLOCK_OBJSTORE(OP_RSA);
       
  1145 	(void) pthread_mutex_unlock(uri_lock);
       
  1146 	}
       
  1147 
       
  1148 /*
       
  1149  * same situation as in parent - we need to unlock all locks to make them
       
  1150  * accessible to all threads.
       
  1151  */
       
  1152 static void pk11_fork_child(void)
       
  1153 	{
       
  1154 	int i;
       
  1155 
       
  1156 	if (!pk11_library_initialized)
       
  1157 		return;
       
  1158 
       
  1159 	for (i = OP_MAX - 1; i >= 0; i--)
       
  1160 		{
       
  1161 		(void) pthread_mutex_unlock(session_cache[i].lock);
       
  1162 		}
       
  1163 	UNLOCK_OBJSTORE(OP_DH);
       
  1164 	UNLOCK_OBJSTORE(OP_DSA);
       
  1165 	UNLOCK_OBJSTORE(OP_RSA);
       
  1166 	(void) pthread_mutex_unlock(uri_lock);
       
  1167 	}
       
  1168 
       
  1169 /* Initialization function for the pk11 engine */
       
  1170 static int pk11_init(ENGINE *e)
       
  1171 	{
       
  1172 	return (pk11_library_init(e));
       
  1173 	}
       
  1174 
       
  1175 /*
       
  1176  * Initialization function. Sets up various PKCS#11 library components.
       
  1177  * It selects a slot based on predefined critiera. In the process, it also
       
  1178  * count how many ciphers and digests to support. Since the cipher and
       
  1179  * digest information is needed when setting default engine, this function
       
  1180  * needs to be called before calling ENGINE_set_default.
       
  1181  */
       
  1182 /* ARGSUSED */
       
  1183 static int pk11_library_init(ENGINE *e)
       
  1184 	{
       
  1185 	CK_C_GetFunctionList p;
       
  1186 	CK_RV rv = CKR_OK;
       
  1187 	CK_INFO info;
       
  1188 	CK_ULONG ul_state_len;
       
  1189 	int any_slot_found;
       
  1190 	int i;
       
  1191 
       
  1192 	/*
       
  1193 	 * pk11_library_initialized is set to 0 in pk11_finish() which is called
       
  1194 	 * from ENGINE_finish(). However, if there is still at least one
       
  1195 	 * existing functional reference to the engine (see engine(3) for more
       
  1196 	 * information), pk11_finish() is skipped. For example, this can happen
       
  1197 	 * if an application forgets to clear one cipher context. In case of a
       
  1198 	 * fork() when the application is finishing the engine so that it can be
       
  1199 	 * reinitialized in the child, forgotten functional reference causes
       
  1200 	 * pk11_library_initialized to stay 1. In that case we need the PID
       
  1201 	 * check so that we properly initialize the engine again.
       
  1202 	 */
       
  1203 	if (pk11_library_initialized)
       
  1204 		{
       
  1205 		if (pk11_pid == getpid())
       
  1206 			{
       
  1207 			return (1);
       
  1208 			}
       
  1209 		else
       
  1210 			{
       
  1211 			global_session = CK_INVALID_HANDLE;
       
  1212 			/*
       
  1213 			 * free the locks first to prevent memory leak in case
       
  1214 			 * the application calls fork() without finishing the
       
  1215 			 * engine first.
       
  1216 			 */
       
  1217 			pk11_free_all_locks();
       
  1218 			}
       
  1219 		}
       
  1220 
       
  1221 	if (pk11_dso == NULL)
       
  1222 		{
       
  1223 		PK11err(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE);
       
  1224 		goto err;
       
  1225 		}
       
  1226 
       
  1227 #ifdef	SOLARIS_AES_CTR
       
  1228 	/*
       
  1229 	 * We must do this before we start working with slots since we need all
       
  1230 	 * NIDs there.
       
  1231 	 */
       
  1232 	if (pk11_add_aes_ctr_NIDs() == 0)
       
  1233 		goto err;
       
  1234 #endif	/* SOLARIS_AES_CTR */
       
  1235 
       
  1236 #ifdef	SOLARIS_HW_SLOT_SELECTION
       
  1237 	if (check_hw_mechanisms() == 0)
       
  1238 		goto err;
       
  1239 #endif	/* SOLARIS_HW_SLOT_SELECTION */
       
  1240 
       
  1241 	/* get the C_GetFunctionList function from the loaded library */
       
  1242 	p = (CK_C_GetFunctionList)DSO_bind_func(pk11_dso,
       
  1243 		PK11_GET_FUNCTION_LIST);
       
  1244 	if (!p)
       
  1245 		{
       
  1246 		PK11err(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE);
       
  1247 		goto err;
       
  1248 		}
       
  1249 
       
  1250 	/* get the full function list from the loaded library */
       
  1251 	rv = p(&pFuncList);
       
  1252 	if (rv != CKR_OK)
       
  1253 		{
       
  1254 		PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_DSO_FAILURE, rv);
       
  1255 		goto err;
       
  1256 		}
       
  1257 
       
  1258 	rv = pFuncList->C_Initialize(NULL_PTR);
       
  1259 	if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
       
  1260 		{
       
  1261 		PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_INITIALIZE, rv);
       
  1262 		goto err;
       
  1263 		}
       
  1264 
       
  1265 	rv = pFuncList->C_GetInfo(&info);
       
  1266 	if (rv != CKR_OK)
       
  1267 		{
       
  1268 		PK11err_add_data(PK11_F_LIBRARY_INIT, PK11_R_GETINFO, rv);
       
  1269 		goto err;
       
  1270 		}
       
  1271 
       
  1272 	if (pk11_choose_slots(&any_slot_found) == 0)
       
  1273 		goto err;
       
  1274 
       
  1275 	/*
       
  1276 	 * The library we use, set in def_PK11_LIBNAME, may not offer any
       
  1277 	 * slot(s). In that case, we must not proceed but we must not return an
       
  1278 	 * error. The reason is that applications that try to set up the PKCS#11
       
  1279 	 * engine don't exit on error during the engine initialization just
       
  1280 	 * because no slot was present.
       
  1281 	 */
       
  1282 	if (any_slot_found == 0)
       
  1283 		return (1);
       
  1284 
       
  1285 	if (global_session == CK_INVALID_HANDLE)
       
  1286 		{
       
  1287 		/* Open the global_session for the new process */
       
  1288 		rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
       
  1289 			NULL_PTR, NULL_PTR, &global_session);
       
  1290 		if (rv != CKR_OK)
       
  1291 			{
       
  1292 			PK11err_add_data(PK11_F_LIBRARY_INIT,
       
  1293 			    PK11_R_OPENSESSION, rv);
       
  1294 			goto err;
       
  1295 			}
       
  1296 		}
       
  1297 
       
  1298 	/*
       
  1299 	 * Disable digest if C_GetOperationState is not supported since
       
  1300 	 * this function is required by OpenSSL digest copy function
       
  1301 	 */
       
  1302 	if (pFuncList->C_GetOperationState(global_session, NULL, &ul_state_len)
       
  1303 			== CKR_FUNCTION_NOT_SUPPORTED)
       
  1304 		{
       
  1305 		DEBUG_SLOT_SEL("%s: C_GetOperationState() not supported, "
       
  1306 		    "setting digest_count to 0\n", PK11_DBG);
       
  1307 		digest_count = 0;
       
  1308 		}
       
  1309 
       
  1310 	pk11_library_initialized = CK_TRUE;
       
  1311 	pk11_pid = getpid();
       
  1312 	/*
       
  1313 	 * if initialization of the locks fails pk11_init_all_locks()
       
  1314 	 * will do the cleanup.
       
  1315 	 */
       
  1316 	if (!pk11_init_all_locks())
       
  1317 		goto err;
       
  1318 	for (i = 0; i < OP_MAX; i++)
       
  1319 		session_cache[i].head = NULL;
       
  1320 	/*
       
  1321 	 * initialize active lists. We only use active lists
       
  1322 	 * for asymmetric ciphers.
       
  1323 	 */
       
  1324 	for (i = 0; i < OP_MAX; i++)
       
  1325 		active_list[i] = NULL;
       
  1326 
       
  1327 	if (!pk11_atfork_initialized)
       
  1328 		{
       
  1329 		if (pthread_atfork(pk11_fork_prepare, pk11_fork_parent,
       
  1330 		    pk11_fork_child) != 0)
       
  1331 			{
       
  1332 			PK11err(PK11_F_LIBRARY_INIT, PK11_R_ATFORK_FAILED);
       
  1333 			goto err;
       
  1334 			}
       
  1335 		pk11_atfork_initialized = CK_TRUE;
       
  1336 		}
       
  1337 
       
  1338 	return (1);
       
  1339 
       
  1340 err:
       
  1341 	return (0);
       
  1342 	}
       
  1343 
       
  1344 /* Destructor (complements the "ENGINE_pk11()" constructor) */
       
  1345 /* ARGSUSED */
       
  1346 static int pk11_destroy(ENGINE *e)
       
  1347 	{
       
  1348 	free_PK11_LIBNAME();
       
  1349 	ERR_unload_pk11_strings();
       
  1350 	return (1);
       
  1351 	}
       
  1352 
       
  1353 /*
       
  1354  * Termination function to clean up the session, the token, and the pk11
       
  1355  * library.
       
  1356  */
       
  1357 /* ARGSUSED */
       
  1358 static int pk11_finish(ENGINE *e)
       
  1359 	{
       
  1360 	int i;
       
  1361 
       
  1362 	if (pk11_dso == NULL)
       
  1363 		{
       
  1364 		PK11err(PK11_F_FINISH, PK11_R_NOT_LOADED);
       
  1365 		goto err;
       
  1366 		}
       
  1367 
       
  1368 	OPENSSL_assert(pFuncList != NULL);
       
  1369 
       
  1370 	if (pk11_free_all_sessions() == 0)
       
  1371 		goto err;
       
  1372 
       
  1373 	/* free all active lists */
       
  1374 	for (i = 0; i < OP_MAX; i++)
       
  1375 		pk11_free_active_list(i);
       
  1376 
       
  1377 	pFuncList->C_CloseSession(global_session);
       
  1378 	global_session = CK_INVALID_HANDLE;
       
  1379 
       
  1380 	/*
       
  1381 	 * Since we are part of a library (libcrypto.so), calling this function
       
  1382 	 * may have side-effects.
       
  1383 	 */
       
  1384 #if 0
       
  1385 	pFuncList->C_Finalize(NULL);
       
  1386 #endif
       
  1387 #ifdef	SOLARIS_AES_CTR
       
  1388 		{
       
  1389 		ASN1_OBJECT *ob = NULL;
       
  1390 		if (NID_aes_128_ctr != NID_undef)
       
  1391 			{
       
  1392 			ob = OBJ_nid2obj(NID_aes_128_ctr);
       
  1393 			if (ob != NULL)
       
  1394 				ASN1_OBJECT_free(ob);
       
  1395 			}
       
  1396 		if (NID_aes_192_ctr != NID_undef)
       
  1397 			{
       
  1398 			ob = OBJ_nid2obj(NID_aes_192_ctr);
       
  1399 			if (ob != NULL)
       
  1400 				ASN1_OBJECT_free(ob);
       
  1401 			}
       
  1402 		if (NID_aes_256_ctr != NID_undef)
       
  1403 			{
       
  1404 			ob = OBJ_nid2obj(NID_aes_256_ctr);
       
  1405 			if (ob != NULL)
       
  1406 				ASN1_OBJECT_free(ob);
       
  1407 			}
       
  1408 		}
       
  1409 #endif
       
  1410 
       
  1411 	if (!DSO_free(pk11_dso))
       
  1412 		{
       
  1413 		PK11err(PK11_F_FINISH, PK11_R_DSO_FAILURE);
       
  1414 		goto err;
       
  1415 		}
       
  1416 	pk11_dso = NULL;
       
  1417 	pFuncList = NULL;
       
  1418 	pk11_library_initialized = CK_FALSE;
       
  1419 	pk11_pid = 0;
       
  1420 	/*
       
  1421 	 * There is no way how to unregister atfork handlers (other than
       
  1422 	 * unloading the library) so we just free the locks. For this reason
       
  1423 	 * the atfork handlers check if the engine is initialized and bail out
       
  1424 	 * immediately if not. This is necessary in case a process finishes
       
  1425 	 * the engine before calling fork().
       
  1426 	 */
       
  1427 	pk11_free_all_locks();
       
  1428 
       
  1429 	return (1);
       
  1430 
       
  1431 err:
       
  1432 	return (0);
       
  1433 	}
       
  1434 
       
  1435 /* Standard engine interface function to set the dynamic library path */
       
  1436 /* ARGSUSED */
       
  1437 static int pk11_ctrl(ENGINE *e, int cmd, long i, void *p, void (*f)())
       
  1438 	{
       
  1439 	int initialized = ((pk11_dso == NULL) ? 0 : 1);
       
  1440 
       
  1441 	switch (cmd)
       
  1442 		{
       
  1443 	case PK11_CMD_SO_PATH:
       
  1444 		if (p == NULL)
       
  1445 			{
       
  1446 			PK11err(PK11_F_CTRL, ERR_R_PASSED_NULL_PARAMETER);
       
  1447 			return (0);
       
  1448 			}
       
  1449 
       
  1450 		if (initialized)
       
  1451 			{
       
  1452 			PK11err(PK11_F_CTRL, PK11_R_ALREADY_LOADED);
       
  1453 			return (0);
       
  1454 			}
       
  1455 
       
  1456 		return (set_PK11_LIBNAME((const char *)p));
       
  1457 	default:
       
  1458 		break;
       
  1459 		}
       
  1460 
       
  1461 	PK11err(PK11_F_CTRL, PK11_R_CTRL_COMMAND_NOT_IMPLEMENTED);
       
  1462 
       
  1463 	return (0);
       
  1464 	}
       
  1465 
       
  1466 
       
  1467 /* Required function by the engine random interface. It does nothing here */
       
  1468 static void pk11_rand_cleanup(void)
       
  1469 	{
       
  1470 	return;
       
  1471 	}
       
  1472 
       
  1473 /* ARGSUSED */
       
  1474 static void pk11_rand_add(const void *buf, int num, double add)
       
  1475 	{
       
  1476 	PK11_SESSION *sp;
       
  1477 
       
  1478 	if ((sp = pk11_get_session(OP_RAND)) == NULL)
       
  1479 		return;
       
  1480 
       
  1481 	/*
       
  1482 	 * Ignore any errors (e.g. CKR_RANDOM_SEED_NOT_SUPPORTED) since
       
  1483 	 * the calling functions do not care anyway
       
  1484 	 */
       
  1485 	pFuncList->C_SeedRandom(sp->session, (unsigned char *) buf, num);
       
  1486 	pk11_return_session(sp, OP_RAND);
       
  1487 
       
  1488 	return;
       
  1489 	}
       
  1490 
       
  1491 static void pk11_rand_seed(const void *buf, int num)
       
  1492 	{
       
  1493 	pk11_rand_add(buf, num, 0);
       
  1494 	}
       
  1495 
       
  1496 static int pk11_rand_bytes(unsigned char *buf, int num)
       
  1497 	{
       
  1498 	CK_RV rv;
       
  1499 	PK11_SESSION *sp;
       
  1500 
       
  1501 	if ((sp = pk11_get_session(OP_RAND)) == NULL)
       
  1502 		return (0);
       
  1503 
       
  1504 	rv = pFuncList->C_GenerateRandom(sp->session, buf, num);
       
  1505 	if (rv != CKR_OK)
       
  1506 		{
       
  1507 		PK11err_add_data(PK11_F_RAND_BYTES, PK11_R_GENERATERANDOM, rv);
       
  1508 		pk11_return_session(sp, OP_RAND);
       
  1509 		return (0);
       
  1510 		}
       
  1511 
       
  1512 	pk11_return_session(sp, OP_RAND);
       
  1513 	return (1);
       
  1514 	}
       
  1515 
       
  1516 /* Required function by the engine random interface. It does nothing here */
       
  1517 static int pk11_rand_status(void)
       
  1518 	{
       
  1519 	return (1);
       
  1520 	}
       
  1521 
       
  1522 /* Free all BIGNUM structures from PK11_SESSION. */
       
  1523 static void pk11_free_nums(PK11_SESSION *sp, PK11_OPTYPE optype)
       
  1524 	{
       
  1525 	switch (optype)
       
  1526 		{
       
  1527 #ifndef	OPENSSL_NO_RSA
       
  1528 		case OP_RSA:
       
  1529 			if (sp->opdata_rsa_n_num != NULL)
       
  1530 				{
       
  1531 				BN_free(sp->opdata_rsa_n_num);
       
  1532 				sp->opdata_rsa_n_num = NULL;
       
  1533 				}
       
  1534 			if (sp->opdata_rsa_e_num != NULL)
       
  1535 				{
       
  1536 				BN_free(sp->opdata_rsa_e_num);
       
  1537 				sp->opdata_rsa_e_num = NULL;
       
  1538 				}
       
  1539 			if (sp->opdata_rsa_d_num != NULL)
       
  1540 				{
       
  1541 				BN_free(sp->opdata_rsa_d_num);
       
  1542 				sp->opdata_rsa_d_num = NULL;
       
  1543 				}
       
  1544 			break;
       
  1545 #endif
       
  1546 #ifndef	OPENSSL_NO_DSA
       
  1547 		case OP_DSA:
       
  1548 			if (sp->opdata_dsa_pub_num != NULL)
       
  1549 				{
       
  1550 				BN_free(sp->opdata_dsa_pub_num);
       
  1551 				sp->opdata_dsa_pub_num = NULL;
       
  1552 				}
       
  1553 			if (sp->opdata_dsa_priv_num != NULL)
       
  1554 				{
       
  1555 				BN_free(sp->opdata_dsa_priv_num);
       
  1556 				sp->opdata_dsa_priv_num = NULL;
       
  1557 				}
       
  1558 			break;
       
  1559 #endif
       
  1560 #ifndef	OPENSSL_NO_DH
       
  1561 		case OP_DH:
       
  1562 			if (sp->opdata_dh_priv_num != NULL)
       
  1563 				{
       
  1564 				BN_free(sp->opdata_dh_priv_num);
       
  1565 				sp->opdata_dh_priv_num = NULL;
       
  1566 				}
       
  1567 			break;
       
  1568 #endif
       
  1569 		default:
       
  1570 			break;
       
  1571 		}
       
  1572 	}
       
  1573 
       
  1574 /*
       
  1575  * Get new PK11_SESSION structure ready for use. Every process must have
       
  1576  * its own freelist of PK11_SESSION structures so handle fork() here
       
  1577  * by destroying the old and creating new freelist.
       
  1578  * The returned PK11_SESSION structure is disconnected from the freelist.
       
  1579  */
       
  1580 PK11_SESSION *
       
  1581 pk11_get_session(PK11_OPTYPE optype)
       
  1582 	{
       
  1583 	PK11_SESSION *sp = NULL, *sp1, *freelist;
       
  1584 	pthread_mutex_t *freelist_lock;
       
  1585 	static pid_t pid = 0;
       
  1586 	pid_t new_pid;
       
  1587 	CK_RV rv;
       
  1588 
       
  1589 	switch (optype)
       
  1590 		{
       
  1591 		case OP_RSA:
       
  1592 		case OP_DSA:
       
  1593 		case OP_DH:
       
  1594 		case OP_RAND:
       
  1595 		case OP_DIGEST:
       
  1596 		case OP_CIPHER:
       
  1597 			freelist_lock = session_cache[optype].lock;
       
  1598 			break;
       
  1599 		default:
       
  1600 			PK11err(PK11_F_GET_SESSION,
       
  1601 				PK11_R_INVALID_OPERATION_TYPE);
       
  1602 			return (NULL);
       
  1603 		}
       
  1604 	(void) pthread_mutex_lock(freelist_lock);
       
  1605 
       
  1606 	/*
       
  1607 	 * Will use it to find out if we forked. We cannot use the PID field in
       
  1608 	 * the session structure because we could get a newly allocated session
       
  1609 	 * here, with no PID information.
       
  1610 	 */
       
  1611 	if (pid == 0)
       
  1612 		pid = getpid();
       
  1613 
       
  1614 	freelist = session_cache[optype].head;
       
  1615 	sp = freelist;
       
  1616 
       
  1617 	/*
       
  1618 	 * If the free list is empty, allocate new uninitialized (filled
       
  1619 	 * with zeroes) PK11_SESSION structure otherwise return first
       
  1620 	 * structure from the freelist.
       
  1621 	 */
       
  1622 	if (sp == NULL)
       
  1623 		{
       
  1624 		if ((sp = OPENSSL_malloc(sizeof (PK11_SESSION))) == NULL)
       
  1625 			{
       
  1626 			PK11err(PK11_F_GET_SESSION,
       
  1627 				PK11_R_MALLOC_FAILURE);
       
  1628 			goto err;
       
  1629 			}
       
  1630 		(void) memset(sp, 0, sizeof (PK11_SESSION));
       
  1631 
       
  1632 		/*
       
  1633 		 * It is a new session so it will look like a cache miss to the
       
  1634 		 * code below. So, we must not try to to destroy its members so
       
  1635 		 * mark them as unused.
       
  1636 		 */
       
  1637 		sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
       
  1638 		sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
       
  1639 		}
       
  1640 	else
       
  1641 		freelist = sp->next;
       
  1642 
       
  1643 	/*
       
  1644 	 * Check whether we have forked. In that case, we must get rid of all
       
  1645 	 * inherited sessions and start allocating new ones.
       
  1646 	 */
       
  1647 	if (pid != (new_pid = getpid()))
       
  1648 		{
       
  1649 		pid = new_pid;
       
  1650 
       
  1651 		/*
       
  1652 		 * We are a new process and thus need to free any inherited
       
  1653 		 * PK11_SESSION objects aside from the first session (sp) which
       
  1654 		 * is the only PK11_SESSION structure we will reuse (for the
       
  1655 		 * head of the list).
       
  1656 		 */
       
  1657 		while ((sp1 = freelist) != NULL)
       
  1658 			{
       
  1659 			freelist = sp1->next;
       
  1660 			/*
       
  1661 			 * NOTE: we do not want to call pk11_free_all_sessions()
       
  1662 			 * here because it would close underlying PKCS#11
       
  1663 			 * sessions and destroy all objects.
       
  1664 			 */
       
  1665 			pk11_free_nums(sp1, optype);
       
  1666 			OPENSSL_free(sp1);
       
  1667 			}
       
  1668 
       
  1669 		/* we have to free the active list as well. */
       
  1670 		pk11_free_active_list(optype);
       
  1671 
       
  1672 		/* Initialize the process */
       
  1673 		rv = pFuncList->C_Initialize(NULL_PTR);
       
  1674 		if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
       
  1675 			{
       
  1676 			PK11err_add_data(PK11_F_GET_SESSION, PK11_R_INITIALIZE,
       
  1677 			    rv);
       
  1678 			OPENSSL_free(sp);
       
  1679 			sp = NULL;
       
  1680 			goto err;
       
  1681 			}
       
  1682 
       
  1683 		/*
       
  1684 		 * Choose slot here since the slot table is different on this
       
  1685 		 * process. If we are here then we must have found at least one
       
  1686 		 * usable slot before so we don't need to check any_slot_found.
       
  1687 		 * See pk11_library_init()'s usage of this function for more
       
  1688 		 * information.
       
  1689 		 */
       
  1690 #ifdef	SOLARIS_HW_SLOT_SELECTION
       
  1691 		if (check_hw_mechanisms() == 0)
       
  1692 			goto err;
       
  1693 #endif	/* SOLARIS_HW_SLOT_SELECTION */
       
  1694 		if (pk11_choose_slots(NULL) == 0)
       
  1695 			goto err;
       
  1696 
       
  1697 		/* Open the global_session for the new process */
       
  1698 		rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
       
  1699 			NULL_PTR, NULL_PTR, &global_session);
       
  1700 		if (rv != CKR_OK)
       
  1701 			{
       
  1702 			PK11err_add_data(PK11_F_GET_SESSION, PK11_R_OPENSESSION,
       
  1703 			    rv);
       
  1704 			OPENSSL_free(sp);
       
  1705 			sp = NULL;
       
  1706 			goto err;
       
  1707 			}
       
  1708 
       
  1709 		/*
       
  1710 		 * It is an inherited session from our parent so it needs
       
  1711 		 * re-initialization.
       
  1712 		 */
       
  1713 		if (pk11_setup_session(sp, optype) == 0)
       
  1714 			{
       
  1715 			OPENSSL_free(sp);
       
  1716 			sp = NULL;
       
  1717 			goto err;
       
  1718 			}
       
  1719 		if (pk11_token_relogin(sp->session) == 0)
       
  1720 			{
       
  1721 			/*
       
  1722 			 * We will keep the session in the cache list and let
       
  1723 			 * the caller cope with the situation.
       
  1724 			 */
       
  1725 			freelist = sp;
       
  1726 			sp = NULL;
       
  1727 			goto err;
       
  1728 			}
       
  1729 		}
       
  1730 
       
  1731 	if (sp->pid == 0)
       
  1732 		{
       
  1733 		/* It is a new session and needs initialization. */
       
  1734 		if (pk11_setup_session(sp, optype) == 0)
       
  1735 			{
       
  1736 			OPENSSL_free(sp);
       
  1737 			sp = NULL;
       
  1738 			}
       
  1739 		}
       
  1740 
       
  1741 	/* set new head for the list of PK11_SESSION objects */
       
  1742 	session_cache[optype].head = freelist;
       
  1743 
       
  1744 err:
       
  1745 	if (sp != NULL)
       
  1746 		sp->next = NULL;
       
  1747 
       
  1748 	(void) pthread_mutex_unlock(freelist_lock);
       
  1749 
       
  1750 	return (sp);
       
  1751 	}
       
  1752 
       
  1753 
       
  1754 void
       
  1755 pk11_return_session(PK11_SESSION *sp, PK11_OPTYPE optype)
       
  1756 	{
       
  1757 	pthread_mutex_t *freelist_lock;
       
  1758 	PK11_SESSION *freelist;
       
  1759 
       
  1760 	/*
       
  1761 	 * If this is a session from the parent it will be taken care of and
       
  1762 	 * freed in pk11_get_session() as part of the post-fork clean up the
       
  1763 	 * next time we will ask for a new session.
       
  1764 	 */
       
  1765 	if (sp == NULL || sp->pid != getpid())
       
  1766 		return;
       
  1767 
       
  1768 	switch (optype)
       
  1769 		{
       
  1770 		case OP_RSA:
       
  1771 		case OP_DSA:
       
  1772 		case OP_DH:
       
  1773 		case OP_RAND:
       
  1774 		case OP_DIGEST:
       
  1775 		case OP_CIPHER:
       
  1776 			freelist_lock = session_cache[optype].lock;
       
  1777 			break;
       
  1778 		default:
       
  1779 			PK11err(PK11_F_RETURN_SESSION,
       
  1780 				PK11_R_INVALID_OPERATION_TYPE);
       
  1781 			return;
       
  1782 		}
       
  1783 
       
  1784 	(void) pthread_mutex_lock(freelist_lock);
       
  1785 	freelist = session_cache[optype].head;
       
  1786 	sp->next = freelist;
       
  1787 	session_cache[optype].head = sp;
       
  1788 	(void) pthread_mutex_unlock(freelist_lock);
       
  1789 	}
       
  1790 
       
  1791 
       
  1792 /* Destroy all objects. This function is called when the engine is finished */
       
  1793 static int pk11_free_all_sessions()
       
  1794 	{
       
  1795 	int ret = 1;
       
  1796 	int type;
       
  1797 
       
  1798 #ifndef OPENSSL_NO_RSA
       
  1799 	(void) pk11_destroy_rsa_key_objects(NULL);
       
  1800 #endif	/* OPENSSL_NO_RSA */
       
  1801 #ifndef OPENSSL_NO_DSA
       
  1802 	(void) pk11_destroy_dsa_key_objects(NULL);
       
  1803 #endif	/* OPENSSL_NO_DSA */
       
  1804 #ifndef OPENSSL_NO_DH
       
  1805 	(void) pk11_destroy_dh_key_objects(NULL);
       
  1806 #endif	/* OPENSSL_NO_DH */
       
  1807 	(void) pk11_destroy_cipher_key_objects(NULL);
       
  1808 
       
  1809 	/*
       
  1810 	 * We try to release as much as we can but any error means that we will
       
  1811 	 * return 0 on exit.
       
  1812 	 */
       
  1813 	for (type = 0; type < OP_MAX; type++)
       
  1814 		{
       
  1815 		if (pk11_free_session_list(type) == 0)
       
  1816 			ret = 0;
       
  1817 		}
       
  1818 
       
  1819 	return (ret);
       
  1820 	}
       
  1821 
       
  1822 /*
       
  1823  * Destroy session structures from the linked list specified. Free as many
       
  1824  * sessions as possible but any failure in C_CloseSession() means that we
       
  1825  * return an error on return.
       
  1826  */
       
  1827 static int pk11_free_session_list(PK11_OPTYPE optype)
       
  1828 	{
       
  1829 	CK_RV rv;
       
  1830 	PK11_SESSION *sp = NULL;
       
  1831 	PK11_SESSION *freelist = NULL;
       
  1832 	pid_t mypid = getpid();
       
  1833 	pthread_mutex_t *freelist_lock;
       
  1834 	int ret = 1;
       
  1835 
       
  1836 	switch (optype)
       
  1837 		{
       
  1838 		case OP_RSA:
       
  1839 		case OP_DSA:
       
  1840 		case OP_DH:
       
  1841 		case OP_RAND:
       
  1842 		case OP_DIGEST:
       
  1843 		case OP_CIPHER:
       
  1844 			freelist_lock = session_cache[optype].lock;
       
  1845 			break;
       
  1846 		default:
       
  1847 			PK11err(PK11_F_FREE_ALL_SESSIONS,
       
  1848 				PK11_R_INVALID_OPERATION_TYPE);
       
  1849 			return (0);
       
  1850 		}
       
  1851 
       
  1852 	(void) pthread_mutex_lock(freelist_lock);
       
  1853 	freelist = session_cache[optype].head;
       
  1854 	while ((sp = freelist) != NULL)
       
  1855 		{
       
  1856 		if (sp->session != CK_INVALID_HANDLE && sp->pid == mypid)
       
  1857 			{
       
  1858 			rv = pFuncList->C_CloseSession(sp->session);
       
  1859 			if (rv != CKR_OK)
       
  1860 				{
       
  1861 				PK11err_add_data(PK11_F_FREE_ALL_SESSIONS,
       
  1862 					PK11_R_CLOSESESSION, rv);
       
  1863 				ret = 0;
       
  1864 				}
       
  1865 			}
       
  1866 		freelist = sp->next;
       
  1867 		pk11_free_nums(sp, optype);
       
  1868 		OPENSSL_free(sp);
       
  1869 		}
       
  1870 
       
  1871 	(void) pthread_mutex_unlock(freelist_lock);
       
  1872 	return (ret);
       
  1873 	}
       
  1874 
       
  1875 
       
  1876 static int
       
  1877 pk11_setup_session(PK11_SESSION *sp, PK11_OPTYPE optype)
       
  1878 	{
       
  1879 	CK_RV rv;
       
  1880 	CK_SLOT_ID myslot;
       
  1881 
       
  1882 	switch (optype)
       
  1883 		{
       
  1884 		case OP_RSA:
       
  1885 		case OP_DSA:
       
  1886 		case OP_DH:
       
  1887 			myslot = pubkey_SLOTID;
       
  1888 			break;
       
  1889 		case OP_RAND:
       
  1890 			myslot = rand_SLOTID;
       
  1891 			break;
       
  1892 		case OP_DIGEST:
       
  1893 		case OP_CIPHER:
       
  1894 			myslot = SLOTID;
       
  1895 			break;
       
  1896 		default:
       
  1897 			PK11err(PK11_F_SETUP_SESSION,
       
  1898 			    PK11_R_INVALID_OPERATION_TYPE);
       
  1899 			return (0);
       
  1900 		}
       
  1901 
       
  1902 	sp->session = CK_INVALID_HANDLE;
       
  1903 	DEBUG_SLOT_SEL("%s: myslot=%d optype=%d\n", PK11_DBG, myslot, optype);
       
  1904 	rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION,
       
  1905 		NULL_PTR, NULL_PTR, &sp->session);
       
  1906 	if (rv == CKR_CRYPTOKI_NOT_INITIALIZED)
       
  1907 		{
       
  1908 		/*
       
  1909 		 * We are probably a child process so force the
       
  1910 		 * reinitialize of the session
       
  1911 		 */
       
  1912 		pk11_library_initialized = CK_FALSE;
       
  1913 		if (!pk11_library_init(NULL))
       
  1914 			return (0);
       
  1915 		rv = pFuncList->C_OpenSession(myslot, CKF_SERIAL_SESSION,
       
  1916 			NULL_PTR, NULL_PTR, &sp->session);
       
  1917 		}
       
  1918 	if (rv != CKR_OK)
       
  1919 		{
       
  1920 		PK11err_add_data(PK11_F_SETUP_SESSION, PK11_R_OPENSESSION, rv);
       
  1921 		return (0);
       
  1922 		}
       
  1923 
       
  1924 	sp->pid = getpid();
       
  1925 
       
  1926 	switch (optype)
       
  1927 		{
       
  1928 #ifndef OPENSSL_NO_RSA
       
  1929 		case OP_RSA:
       
  1930 			sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
       
  1931 			sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
       
  1932 			sp->opdata_rsa_pub = NULL;
       
  1933 			sp->opdata_rsa_n_num = NULL;
       
  1934 			sp->opdata_rsa_e_num = NULL;
       
  1935 			sp->opdata_rsa_priv = NULL;
       
  1936 			sp->opdata_rsa_d_num = NULL;
       
  1937 			break;
       
  1938 #endif	/* OPENSSL_NO_RSA */
       
  1939 #ifndef OPENSSL_NO_DSA
       
  1940 		case OP_DSA:
       
  1941 			sp->opdata_dsa_pub_key = CK_INVALID_HANDLE;
       
  1942 			sp->opdata_dsa_priv_key = CK_INVALID_HANDLE;
       
  1943 			sp->opdata_dsa_pub = NULL;
       
  1944 			sp->opdata_dsa_pub_num = NULL;
       
  1945 			sp->opdata_dsa_priv = NULL;
       
  1946 			sp->opdata_dsa_priv_num = NULL;
       
  1947 			break;
       
  1948 #endif	/* OPENSSL_NO_DSA */
       
  1949 #ifndef OPENSSL_NO_DH
       
  1950 		case OP_DH:
       
  1951 			sp->opdata_dh_key = CK_INVALID_HANDLE;
       
  1952 			sp->opdata_dh = NULL;
       
  1953 			sp->opdata_dh_priv_num = NULL;
       
  1954 			break;
       
  1955 #endif	/* OPENSSL_NO_DH */
       
  1956 		case OP_CIPHER:
       
  1957 			sp->opdata_cipher_key = CK_INVALID_HANDLE;
       
  1958 			sp->opdata_encrypt = -1;
       
  1959 			break;
       
  1960 		}
       
  1961 
       
  1962 	/*
       
  1963 	 * We always initialize the session as containing a non-persistent
       
  1964 	 * object. The key load functions set it to persistent if that is so.
       
  1965 	 */
       
  1966 	sp->persistent = CK_FALSE;
       
  1967 	return (1);
       
  1968 	}
       
  1969 
       
  1970 #ifndef OPENSSL_NO_RSA
       
  1971 /*
       
  1972  * Destroy all non-NULL RSA parameters. For the RSA keys by reference code,
       
  1973  * public components 'n'/'e' are the key components we use to check for the
       
  1974  * cache hit even for the private keys. So, no matter whether we are destroying
       
  1975  * a public or a private key, we always free what we can.
       
  1976  */
       
  1977 static void
       
  1978 destroy_all_rsa_params(PK11_SESSION *sp)
       
  1979 	{
       
  1980 	if (sp->opdata_rsa_n_num != NULL)
       
  1981 		{
       
  1982 		BN_free(sp->opdata_rsa_n_num);
       
  1983 		sp->opdata_rsa_n_num = NULL;
       
  1984 		}
       
  1985 	if (sp->opdata_rsa_e_num != NULL)
       
  1986 		{
       
  1987 		BN_free(sp->opdata_rsa_e_num);
       
  1988 		sp->opdata_rsa_e_num = NULL;
       
  1989 		}
       
  1990 	if (sp->opdata_rsa_d_num != NULL)
       
  1991 		{
       
  1992 		BN_free(sp->opdata_rsa_d_num);
       
  1993 		sp->opdata_rsa_d_num = NULL;
       
  1994 		}
       
  1995 	}
       
  1996 
       
  1997 /* Destroy RSA public key from single session. */
       
  1998 int
       
  1999 pk11_destroy_rsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock)
       
  2000 	{
       
  2001 	int ret = 0;
       
  2002 
       
  2003 	if (sp->opdata_rsa_pub_key != CK_INVALID_HANDLE)
       
  2004 		{
       
  2005 		TRY_OBJ_DESTROY(sp, sp->opdata_rsa_pub_key,
       
  2006 		    ret, uselock, OP_RSA);
       
  2007 		sp->opdata_rsa_pub_key = CK_INVALID_HANDLE;
       
  2008 		sp->opdata_rsa_pub = NULL;
       
  2009 		destroy_all_rsa_params(sp);
       
  2010 		}
       
  2011 
       
  2012 	return (ret);
       
  2013 	}
       
  2014 
       
  2015 /* Destroy RSA private key from single session. */
       
  2016 int
       
  2017 pk11_destroy_rsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock)
       
  2018 	{
       
  2019 	int ret = 0;
       
  2020 
       
  2021 	if (sp->opdata_rsa_priv_key != CK_INVALID_HANDLE)
       
  2022 		{
       
  2023 		TRY_OBJ_DESTROY(sp, sp->opdata_rsa_priv_key,
       
  2024 		    ret, uselock, OP_RSA);
       
  2025 		sp->opdata_rsa_priv_key = CK_INVALID_HANDLE;
       
  2026 		sp->opdata_rsa_priv = NULL;
       
  2027 		destroy_all_rsa_params(sp);
       
  2028 		}
       
  2029 
       
  2030 	return (ret);
       
  2031 	}
       
  2032 
       
  2033 /*
       
  2034  * Destroy RSA key object wrapper. If session is NULL, try to destroy all
       
  2035  * objects in the free list.
       
  2036  */
       
  2037 int
       
  2038 pk11_destroy_rsa_key_objects(PK11_SESSION *session)
       
  2039 	{
       
  2040 	int ret = 1;
       
  2041 	PK11_SESSION *sp = NULL;
       
  2042 	PK11_SESSION *local_free_session;
       
  2043 	CK_BBOOL uselock = CK_TRUE;
       
  2044 
       
  2045 	if (session != NULL)
       
  2046 		local_free_session = session;
       
  2047 	else
       
  2048 		{
       
  2049 		(void) pthread_mutex_lock(session_cache[OP_RSA].lock);
       
  2050 		local_free_session = session_cache[OP_RSA].head;
       
  2051 		uselock = CK_FALSE;
       
  2052 		}
       
  2053 
       
  2054 	/*
       
  2055 	 * go through the list of sessions and delete key objects
       
  2056 	 */
       
  2057 	while ((sp = local_free_session) != NULL)
       
  2058 		{
       
  2059 		local_free_session = sp->next;
       
  2060 
       
  2061 		/*
       
  2062 		 * Do not terminate list traversal if one of the
       
  2063 		 * destroy operations fails.
       
  2064 		 */
       
  2065 		if (pk11_destroy_rsa_object_pub(sp, uselock) == 0)
       
  2066 			{
       
  2067 			ret = 0;
       
  2068 			continue;
       
  2069 			}
       
  2070 		if (pk11_destroy_rsa_object_priv(sp, uselock) == 0)
       
  2071 			{
       
  2072 			ret = 0;
       
  2073 			continue;
       
  2074 			}
       
  2075 		}
       
  2076 
       
  2077 	if (session == NULL)
       
  2078 		(void) pthread_mutex_unlock(session_cache[OP_RSA].lock);
       
  2079 
       
  2080 	return (ret);
       
  2081 	}
       
  2082 #endif	/* OPENSSL_NO_RSA */
       
  2083 
       
  2084 #ifndef OPENSSL_NO_DSA
       
  2085 /* Destroy DSA public key from single session. */
       
  2086 int
       
  2087 pk11_destroy_dsa_object_pub(PK11_SESSION *sp, CK_BBOOL uselock)
       
  2088 	{
       
  2089 	int ret = 0;
       
  2090 
       
  2091 	if (sp->opdata_dsa_pub_key != CK_INVALID_HANDLE)
       
  2092 		{
       
  2093 		TRY_OBJ_DESTROY(sp, sp->opdata_dsa_pub_key,
       
  2094 		    ret, uselock, OP_DSA);
       
  2095 		sp->opdata_dsa_pub_key = CK_INVALID_HANDLE;
       
  2096 		sp->opdata_dsa_pub = NULL;
       
  2097 		if (sp->opdata_dsa_pub_num != NULL)
       
  2098 			{
       
  2099 			BN_free(sp->opdata_dsa_pub_num);
       
  2100 			sp->opdata_dsa_pub_num = NULL;
       
  2101 			}
       
  2102 		}
       
  2103 
       
  2104 	return (ret);
       
  2105 	}
       
  2106 
       
  2107 /* Destroy DSA private key from single session. */
       
  2108 int
       
  2109 pk11_destroy_dsa_object_priv(PK11_SESSION *sp, CK_BBOOL uselock)
       
  2110 	{
       
  2111 	int ret = 0;
       
  2112 
       
  2113 	if (sp->opdata_dsa_priv_key != CK_INVALID_HANDLE)
       
  2114 		{
       
  2115 		TRY_OBJ_DESTROY(sp, sp->opdata_dsa_priv_key,
       
  2116 		    ret, uselock, OP_DSA);
       
  2117 		sp->opdata_dsa_priv_key = CK_INVALID_HANDLE;
       
  2118 		sp->opdata_dsa_priv = NULL;
       
  2119 		if (sp->opdata_dsa_priv_num != NULL)
       
  2120 			{
       
  2121 			BN_free(sp->opdata_dsa_priv_num);
       
  2122 			sp->opdata_dsa_priv_num = NULL;
       
  2123 			}
       
  2124 		}
       
  2125 
       
  2126 	return (ret);
       
  2127 	}
       
  2128 
       
  2129 /*
       
  2130  * Destroy DSA key object wrapper. If session is NULL, try to destroy all
       
  2131  * objects in the free list.
       
  2132  */
       
  2133 int
       
  2134 pk11_destroy_dsa_key_objects(PK11_SESSION *session)
       
  2135 	{
       
  2136 	int ret = 1;
       
  2137 	PK11_SESSION *sp = NULL;
       
  2138 	PK11_SESSION *local_free_session;
       
  2139 	CK_BBOOL uselock = CK_TRUE;
       
  2140 
       
  2141 	if (session != NULL)
       
  2142 		local_free_session = session;
       
  2143 	else
       
  2144 		{
       
  2145 		(void) pthread_mutex_lock(session_cache[OP_DSA].lock);
       
  2146 		local_free_session = session_cache[OP_DSA].head;
       
  2147 		uselock = CK_FALSE;
       
  2148 		}
       
  2149 
       
  2150 	/*
       
  2151 	 * go through the list of sessions and delete key objects
       
  2152 	 */
       
  2153 	while ((sp = local_free_session) != NULL)
       
  2154 		{
       
  2155 		local_free_session = sp->next;
       
  2156 
       
  2157 		/*
       
  2158 		 * Do not terminate list traversal if one of the
       
  2159 		 * destroy operations fails.
       
  2160 		 */
       
  2161 		if (pk11_destroy_dsa_object_pub(sp, uselock) == 0)
       
  2162 			{
       
  2163 			ret = 0;
       
  2164 			continue;
       
  2165 			}
       
  2166 		if (pk11_destroy_dsa_object_priv(sp, uselock) == 0)
       
  2167 			{
       
  2168 			ret = 0;
       
  2169 			continue;
       
  2170 			}
       
  2171 		}
       
  2172 
       
  2173 	if (session == NULL)
       
  2174 		(void) pthread_mutex_unlock(session_cache[OP_DSA].lock);
       
  2175 
       
  2176 	return (ret);
       
  2177 	}
       
  2178 #endif	/* OPENSSL_NO_DSA */
       
  2179 
       
  2180 #ifndef OPENSSL_NO_DH
       
  2181 /* Destroy DH key from single session. */
       
  2182 int
       
  2183 pk11_destroy_dh_object(PK11_SESSION *sp, CK_BBOOL uselock)
       
  2184 	{
       
  2185 	int ret = 0;
       
  2186 
       
  2187 	if (sp->opdata_dh_key != CK_INVALID_HANDLE)
       
  2188 		{
       
  2189 		TRY_OBJ_DESTROY(sp, sp->opdata_dh_key,
       
  2190 		    ret, uselock, OP_DH);
       
  2191 		sp->opdata_dh_key = CK_INVALID_HANDLE;
       
  2192 		sp->opdata_dh = NULL;
       
  2193 		if (sp->opdata_dh_priv_num != NULL)
       
  2194 			{
       
  2195 			BN_free(sp->opdata_dh_priv_num);
       
  2196 			sp->opdata_dh_priv_num = NULL;
       
  2197 			}
       
  2198 		}
       
  2199 
       
  2200 	return (ret);
       
  2201 	}
       
  2202 
       
  2203 /*
       
  2204  * Destroy DH key object wrapper.
       
  2205  *
       
  2206  * arg0: pointer to PKCS#11 engine session structure
       
  2207  *       if session is NULL, try to destroy all objects in the free list
       
  2208  */
       
  2209 int
       
  2210 pk11_destroy_dh_key_objects(PK11_SESSION *session)
       
  2211 	{
       
  2212 	int ret = 1;
       
  2213 	PK11_SESSION *sp = NULL;
       
  2214 	PK11_SESSION *local_free_session;
       
  2215 	CK_BBOOL uselock = CK_TRUE;
       
  2216 
       
  2217 	if (session != NULL)
       
  2218 		local_free_session = session;
       
  2219 	else
       
  2220 		{
       
  2221 		(void) pthread_mutex_lock(session_cache[OP_DH].lock);
       
  2222 		local_free_session = session_cache[OP_DH].head;
       
  2223 		uselock = CK_FALSE;
       
  2224 		}
       
  2225 
       
  2226 	while ((sp = local_free_session) != NULL)
       
  2227 		{
       
  2228 		local_free_session = sp->next;
       
  2229 
       
  2230 		/*
       
  2231 		 * Do not terminate list traversal if one of the
       
  2232 		 * destroy operations fails.
       
  2233 		 */
       
  2234 		if (pk11_destroy_dh_object(sp, uselock) == 0)
       
  2235 			{
       
  2236 			ret = 0;
       
  2237 			continue;
       
  2238 			}
       
  2239 		}
       
  2240 err:
       
  2241 	if (session == NULL)
       
  2242 		(void) pthread_mutex_unlock(session_cache[OP_DH].lock);
       
  2243 
       
  2244 	return (ret);
       
  2245 	}
       
  2246 #endif	/* OPENSSL_NO_DH */
       
  2247 
       
  2248 static int
       
  2249 pk11_destroy_object(CK_SESSION_HANDLE session, CK_OBJECT_HANDLE oh,
       
  2250     CK_BBOOL persistent)
       
  2251 	{
       
  2252 	CK_RV rv;
       
  2253 
       
  2254 	/*
       
  2255 	 * We never try to destroy persistent objects which are the objects
       
  2256 	 * stored in the keystore. Also, we always use read-only sessions so
       
  2257 	 * C_DestroyObject() would be returning CKR_SESSION_READ_ONLY here.
       
  2258 	 */
       
  2259 	if (persistent == CK_TRUE)
       
  2260 		return (1);
       
  2261 
       
  2262 	rv = pFuncList->C_DestroyObject(session, oh);
       
  2263 	if (rv != CKR_OK)
       
  2264 		{
       
  2265 		PK11err_add_data(PK11_F_DESTROY_OBJECT, PK11_R_DESTROYOBJECT,
       
  2266 		    rv);
       
  2267 		return (0);
       
  2268 		}
       
  2269 
       
  2270 	return (1);
       
  2271 	}
       
  2272 
       
  2273 
       
  2274 /* Symmetric ciphers and digests support functions */
       
  2275 
       
  2276 static int
       
  2277 cipher_nid_to_pk11(int nid)
       
  2278 	{
       
  2279 	int i;
       
  2280 
       
  2281 	for (i = 0; i < PK11_CIPHER_MAX; i++)
       
  2282 		if (ciphers[i].nid == nid)
       
  2283 			return (ciphers[i].id);
       
  2284 	return (-1);
       
  2285 	}
       
  2286 
       
  2287 static int
       
  2288 pk11_usable_ciphers(const int **nids)
       
  2289 	{
       
  2290 	if (cipher_count > 0)
       
  2291 		*nids = cipher_nids;
       
  2292 	else
       
  2293 		*nids = NULL;
       
  2294 	return (cipher_count);
       
  2295 	}
       
  2296 
       
  2297 static int
       
  2298 pk11_usable_digests(const int **nids)
       
  2299 	{
       
  2300 	if (digest_count > 0)
       
  2301 		*nids = digest_nids;
       
  2302 	else
       
  2303 		*nids = NULL;
       
  2304 	return (digest_count);
       
  2305 	}
       
  2306 
       
  2307 /*
       
  2308  * Init context for encryption or decryption using a symmetric key.
       
  2309  */
       
  2310 static int pk11_init_symmetric(EVP_CIPHER_CTX *ctx, PK11_CIPHER *pcipher,
       
  2311 	PK11_SESSION *sp, CK_MECHANISM_PTR pmech)
       
  2312 	{
       
  2313 	CK_RV rv;
       
  2314 #ifdef	SOLARIS_AES_CTR
       
  2315 	CK_AES_CTR_PARAMS ctr_params;
       
  2316 #endif	/* SOLARIS_AES_CTR */
       
  2317 
       
  2318 	/*
       
  2319 	 * We expect pmech->mechanism to be already set and
       
  2320 	 * pParameter/ulParameterLen initialized to NULL/0 before
       
  2321 	 * pk11_init_symmetric() is called.
       
  2322 	 */
       
  2323 	OPENSSL_assert(pmech->mechanism != NULL);
       
  2324 	OPENSSL_assert(pmech->pParameter == NULL);
       
  2325 	OPENSSL_assert(pmech->ulParameterLen == 0);
       
  2326 
       
  2327 #ifdef	SOLARIS_AES_CTR
       
  2328 	if (ctx->cipher->nid == NID_aes_128_ctr ||
       
  2329 	    ctx->cipher->nid == NID_aes_192_ctr ||
       
  2330 	    ctx->cipher->nid == NID_aes_256_ctr)
       
  2331 		{
       
  2332 		pmech->pParameter = (void *)(&ctr_params);
       
  2333 		pmech->ulParameterLen = sizeof (ctr_params);
       
  2334 		/*
       
  2335 		 * For now, we are limited to the fixed length of the counter,
       
  2336 		 * it covers the whole counter block. That's what RFC 4344
       
  2337 		 * needs. For more information on internal structure of the
       
  2338 		 * counter block, see RFC 3686. If needed in the future, we can
       
  2339 		 * add code so that the counter length can be set via
       
  2340 		 * ENGINE_ctrl() function.
       
  2341 		 */
       
  2342 		ctr_params.ulCounterBits = AES_BLOCK_SIZE * 8;
       
  2343 		OPENSSL_assert(pcipher->iv_len == AES_BLOCK_SIZE);
       
  2344 		(void) memcpy(ctr_params.cb, ctx->iv, AES_BLOCK_SIZE);
       
  2345 		}
       
  2346 	else
       
  2347 #endif	/* SOLARIS_AES_CTR */
       
  2348 		{
       
  2349 		if (pcipher->iv_len > 0)
       
  2350 			{
       
  2351 			pmech->pParameter = (void *)ctx->iv;
       
  2352 			pmech->ulParameterLen = pcipher->iv_len;
       
  2353 			}
       
  2354 		}
       
  2355 
       
  2356 	/* if we get here, the encryption needs to be reinitialized */
       
  2357 	if (ctx->encrypt)
       
  2358 		rv = pFuncList->C_EncryptInit(sp->session, pmech,
       
  2359 			sp->opdata_cipher_key);
       
  2360 	else
       
  2361 		rv = pFuncList->C_DecryptInit(sp->session, pmech,
       
  2362 			sp->opdata_cipher_key);
       
  2363 
       
  2364 	if (rv != CKR_OK)
       
  2365 		{
       
  2366 		PK11err_add_data(PK11_F_CIPHER_INIT, ctx->encrypt ?
       
  2367 		    PK11_R_ENCRYPTINIT : PK11_R_DECRYPTINIT, rv);
       
  2368 		pk11_return_session(sp, OP_CIPHER);
       
  2369 		return (0);
       
  2370 		}
       
  2371 
       
  2372 	return (1);
       
  2373 	}
       
  2374 
       
  2375 /* ARGSUSED */
       
  2376 static int
       
  2377 pk11_cipher_init(EVP_CIPHER_CTX *ctx, const unsigned char *key,
       
  2378     const unsigned char *iv, int enc)
       
  2379 	{
       
  2380 	CK_MECHANISM mech;
       
  2381 	int index;
       
  2382 	PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data;
       
  2383 	PK11_SESSION *sp;
       
  2384 	PK11_CIPHER *p_ciph_table_row;
       
  2385 
       
  2386 	state->sp = NULL;
       
  2387 
       
  2388 	index = cipher_nid_to_pk11(ctx->cipher->nid);
       
  2389 	if (index < 0 || index >= PK11_CIPHER_MAX)
       
  2390 		return (0);
       
  2391 
       
  2392 	p_ciph_table_row = &ciphers[index];
       
  2393 	/*
       
  2394 	 * iv_len in the ctx->cipher structure is the maximum IV length for the
       
  2395 	 * current cipher and it must be less or equal to the IV length in our
       
  2396 	 * ciphers table. The key length must be in the allowed interval. From
       
  2397 	 * all cipher modes that the PKCS#11 engine supports only RC4 allows a
       
  2398 	 * key length to be in some range, all other NIDs have a precise key
       
  2399 	 * length. Every application can define its own EVP functions so this
       
  2400 	 * code serves as a sanity check.
       
  2401 	 *
       
  2402 	 * Note that the reason why the IV length in ctx->cipher might be
       
  2403 	 * greater than the actual length is that OpenSSL uses BLOCK_CIPHER_defs
       
  2404 	 * macro to define functions that return EVP structures for all DES
       
  2405 	 * modes. So, even ECB modes get 8 byte IV.
       
  2406 	 */
       
  2407 	if (ctx->cipher->iv_len < p_ciph_table_row->iv_len ||
       
  2408 	    ctx->key_len < p_ciph_table_row->min_key_len ||
       
  2409 	    ctx->key_len > p_ciph_table_row->max_key_len)
       
  2410 		{
       
  2411 		PK11err(PK11_F_CIPHER_INIT, PK11_R_KEY_OR_IV_LEN_PROBLEM);
       
  2412 		return (0);
       
  2413 		}
       
  2414 
       
  2415 	if ((sp = pk11_get_session(OP_CIPHER)) == NULL)
       
  2416 		return (0);
       
  2417 
       
  2418 	/* if applicable, the mechanism parameter is used for IV */
       
  2419 	mech.mechanism = p_ciph_table_row->mech_type;
       
  2420 	mech.pParameter = NULL;
       
  2421 	mech.ulParameterLen = 0;
       
  2422 
       
  2423 	/* The key object is destroyed here if it is not the current key. */
       
  2424 	(void) check_new_cipher_key(sp, key, ctx->key_len);
       
  2425 
       
  2426 	/*
       
  2427 	 * If the key is the same and the encryption is also the same, then
       
  2428 	 * just reuse it. However, we must not forget to reinitialize the
       
  2429 	 * context that was finalized in pk11_cipher_cleanup().
       
  2430 	 */
       
  2431 	if (sp->opdata_cipher_key != CK_INVALID_HANDLE &&
       
  2432 	    sp->opdata_encrypt == ctx->encrypt)
       
  2433 		{
       
  2434 		state->sp = sp;
       
  2435 		if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0)
       
  2436 			return (0);
       
  2437 
       
  2438 		return (1);
       
  2439 		}
       
  2440 
       
  2441 	/*
       
  2442 	 * Check if the key has been invalidated. If so, a new key object
       
  2443 	 * needs to be created.
       
  2444 	 */
       
  2445 	if (sp->opdata_cipher_key == CK_INVALID_HANDLE)
       
  2446 		{
       
  2447 		sp->opdata_cipher_key = pk11_get_cipher_key(
       
  2448 			ctx, key, p_ciph_table_row->key_type, sp);
       
  2449 		}
       
  2450 
       
  2451 	if (sp->opdata_encrypt != ctx->encrypt && sp->opdata_encrypt != -1)
       
  2452 		{
       
  2453 		/*
       
  2454 		 * The previous encryption/decryption is different. Need to
       
  2455 		 * terminate the previous * active encryption/decryption here.
       
  2456 		 */
       
  2457 		if (!pk11_cipher_final(sp))
       
  2458 			{
       
  2459 			pk11_return_session(sp, OP_CIPHER);
       
  2460 			return (0);
       
  2461 			}
       
  2462 		}
       
  2463 
       
  2464 	if (sp->opdata_cipher_key == CK_INVALID_HANDLE)
       
  2465 		{
       
  2466 		pk11_return_session(sp, OP_CIPHER);
       
  2467 		return (0);
       
  2468 		}
       
  2469 
       
  2470 	/* now initialize the context with a new key */
       
  2471 	if (pk11_init_symmetric(ctx, p_ciph_table_row, sp, &mech) == 0)
       
  2472 		return (0);
       
  2473 
       
  2474 	sp->opdata_encrypt = ctx->encrypt;
       
  2475 	state->sp = sp;
       
  2476 
       
  2477 	return (1);
       
  2478 	}
       
  2479 
       
  2480 /*
       
  2481  * When reusing the same key in an encryption/decryption session for a
       
  2482  * decryption/encryption session, we need to close the active session
       
  2483  * and recreate a new one. Note that the key is in the global session so
       
  2484  * that it needs not be recreated.
       
  2485  *
       
  2486  * It is more appropriate to use C_En/DecryptFinish here. At the time of this
       
  2487  * development, these two functions in the PKCS#11 libraries used return
       
  2488  * unexpected errors when passing in 0 length output. It may be a good
       
  2489  * idea to try them again if performance is a problem here and fix
       
  2490  * C_En/DecryptFinial if there are bugs there causing the problem.
       
  2491  */
       
  2492 static int
       
  2493 pk11_cipher_final(PK11_SESSION *sp)
       
  2494 	{
       
  2495 	CK_RV rv;
       
  2496 
       
  2497 	rv = pFuncList->C_CloseSession(sp->session);
       
  2498 	if (rv != CKR_OK)
       
  2499 		{
       
  2500 		PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_CLOSESESSION, rv);
       
  2501 		return (0);
       
  2502 		}
       
  2503 
       
  2504 	rv = pFuncList->C_OpenSession(SLOTID, CKF_SERIAL_SESSION,
       
  2505 		NULL_PTR, NULL_PTR, &sp->session);
       
  2506 	if (rv != CKR_OK)
       
  2507 		{
       
  2508 		PK11err_add_data(PK11_F_CIPHER_FINAL, PK11_R_OPENSESSION, rv);
       
  2509 		return (0);
       
  2510 		}
       
  2511 
       
  2512 	return (1);
       
  2513 	}
       
  2514 
       
  2515 /*
       
  2516  * An engine interface function. The calling function allocates sufficient
       
  2517  * memory for the output buffer "out" to hold the results.
       
  2518  */
       
  2519 static int
       
  2520 pk11_cipher_do_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
       
  2521 	const unsigned char *in, unsigned int inl)
       
  2522 	{
       
  2523 	PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->cipher_data;
       
  2524 	PK11_SESSION *sp;
       
  2525 	CK_RV rv;
       
  2526 	unsigned long outl = inl;
       
  2527 
       
  2528 	if (state == NULL || state->sp == NULL)
       
  2529 		return (0);
       
  2530 
       
  2531 	sp = (PK11_SESSION *) state->sp;
       
  2532 
       
  2533 	if (!inl)
       
  2534 		return (1);
       
  2535 
       
  2536 	/* RC4 is the only stream cipher we support */
       
  2537 	if (ctx->cipher->nid != NID_rc4 && (inl % ctx->cipher->block_size) != 0)
       
  2538 		return (0);
       
  2539 
       
  2540 	if (ctx->encrypt)
       
  2541 		{
       
  2542 		rv = pFuncList->C_EncryptUpdate(sp->session,
       
  2543 			(unsigned char *)in, inl, out, &outl);
       
  2544 
       
  2545 		if (rv != CKR_OK)
       
  2546 			{
       
  2547 			PK11err_add_data(PK11_F_CIPHER_DO_CIPHER,
       
  2548 			    PK11_R_ENCRYPTUPDATE, rv);
       
  2549 			return (0);
       
  2550 			}
       
  2551 		}
       
  2552 	else
       
  2553 		{
       
  2554 		rv = pFuncList->C_DecryptUpdate(sp->session,
       
  2555 			(unsigned char *)in, inl, out, &outl);
       
  2556 
       
  2557 		if (rv != CKR_OK)
       
  2558 			{
       
  2559 			PK11err_add_data(PK11_F_CIPHER_DO_CIPHER,
       
  2560 			    PK11_R_DECRYPTUPDATE, rv);
       
  2561 			return (0);
       
  2562 			}
       
  2563 		}
       
  2564 
       
  2565 	/*
       
  2566 	 * For DES_CBC, DES3_CBC, AES_CBC, and RC4, the output size is always
       
  2567 	 * the same size of input.
       
  2568 	 * The application has guaranteed to call the block ciphers with
       
  2569 	 * correctly aligned buffers.
       
  2570 	 */
       
  2571 	if (inl != outl)
       
  2572 		return (0);
       
  2573 
       
  2574 	return (1);
       
  2575 	}
       
  2576 
       
  2577 /*
       
  2578  * Return the session to the pool. Calling C_EncryptFinal() and C_DecryptFinal()
       
  2579  * here is the right thing because in EVP_DecryptFinal_ex(), engine's
       
  2580  * do_cipher() is not even called, and in EVP_EncryptFinal_ex() it is called but
       
  2581  * the engine can't find out that it's the finalizing call. We wouldn't
       
  2582  * necessarily have to finalize the context here since reinitializing it with
       
  2583  * C_(Encrypt|Decrypt)Init() should be fine but for the sake of correctness,
       
  2584  * let's do it. Some implementations might leak memory if the previously used
       
  2585  * context is initialized without finalizing it first.
       
  2586  */
       
  2587 static int
       
  2588 pk11_cipher_cleanup(EVP_CIPHER_CTX *ctx)
       
  2589 	{
       
  2590 	CK_RV rv;
       
  2591 	CK_ULONG len = EVP_MAX_BLOCK_LENGTH;
       
  2592 	CK_BYTE buf[EVP_MAX_BLOCK_LENGTH];
       
  2593 	PK11_CIPHER_STATE *state = ctx->cipher_data;
       
  2594 
       
  2595 	if (state != NULL && state->sp != NULL)
       
  2596 		{
       
  2597 		/*
       
  2598 		 * We are not interested in the data here, we just need to get
       
  2599 		 * rid of the context.
       
  2600 		 */
       
  2601 		if (ctx->encrypt)
       
  2602 			rv = pFuncList->C_EncryptFinal(
       
  2603 			    state->sp->session, buf, &len);
       
  2604 		else
       
  2605 			rv = pFuncList->C_DecryptFinal(
       
  2606 			    state->sp->session, buf, &len);
       
  2607 
       
  2608 		if (rv != CKR_OK)
       
  2609 			{
       
  2610 			PK11err_add_data(PK11_F_CIPHER_CLEANUP, ctx->encrypt ?
       
  2611 			    PK11_R_ENCRYPTFINAL : PK11_R_DECRYPTFINAL, rv);
       
  2612 			pk11_return_session(state->sp, OP_CIPHER);
       
  2613 			return (0);
       
  2614 			}
       
  2615 
       
  2616 		pk11_return_session(state->sp, OP_CIPHER);
       
  2617 		state->sp = NULL;
       
  2618 		}
       
  2619 
       
  2620 	return (1);
       
  2621 	}
       
  2622 
       
  2623 /*
       
  2624  * Registered by the ENGINE when used to find out how to deal with
       
  2625  * a particular NID in the ENGINE. This says what we'll do at the
       
  2626  * top level - note, that list is restricted by what we answer with
       
  2627  */
       
  2628 /* ARGSUSED */
       
  2629 static int
       
  2630 pk11_engine_ciphers(ENGINE *e, const EVP_CIPHER **cipher,
       
  2631 	const int **nids, int nid)
       
  2632 	{
       
  2633 	if (!cipher)
       
  2634 		return (pk11_usable_ciphers(nids));
       
  2635 
       
  2636 	switch (nid)
       
  2637 		{
       
  2638 		case NID_des_ede3_cbc:
       
  2639 			*cipher = &pk11_3des_cbc;
       
  2640 			break;
       
  2641 		case NID_des_cbc:
       
  2642 			*cipher = &pk11_des_cbc;
       
  2643 			break;
       
  2644 		case NID_des_ede3_ecb:
       
  2645 			*cipher = &pk11_3des_ecb;
       
  2646 			break;
       
  2647 		case NID_des_ecb:
       
  2648 			*cipher = &pk11_des_ecb;
       
  2649 			break;
       
  2650 		case NID_aes_128_cbc:
       
  2651 			*cipher = &pk11_aes_128_cbc;
       
  2652 			break;
       
  2653 		case NID_aes_192_cbc:
       
  2654 			*cipher = &pk11_aes_192_cbc;
       
  2655 			break;
       
  2656 		case NID_aes_256_cbc:
       
  2657 			*cipher = &pk11_aes_256_cbc;
       
  2658 			break;
       
  2659 		case NID_aes_128_ecb:
       
  2660 			*cipher = &pk11_aes_128_ecb;
       
  2661 			break;
       
  2662 		case NID_aes_192_ecb:
       
  2663 			*cipher = &pk11_aes_192_ecb;
       
  2664 			break;
       
  2665 		case NID_aes_256_ecb:
       
  2666 			*cipher = &pk11_aes_256_ecb;
       
  2667 			break;
       
  2668 		case NID_bf_cbc:
       
  2669 			*cipher = &pk11_bf_cbc;
       
  2670 			break;
       
  2671 		case NID_rc4:
       
  2672 			*cipher = &pk11_rc4;
       
  2673 			break;
       
  2674 		default:
       
  2675 #ifdef	SOLARIS_AES_CTR
       
  2676 			/*
       
  2677 			 * These can't be in separated cases because the NIDs
       
  2678 			 * here are not constants.
       
  2679 			 */
       
  2680 			if (nid == NID_aes_128_ctr)
       
  2681 				*cipher = &pk11_aes_128_ctr;
       
  2682 			else if (nid == NID_aes_192_ctr)
       
  2683 				*cipher = &pk11_aes_192_ctr;
       
  2684 			else if (nid == NID_aes_256_ctr)
       
  2685 				*cipher = &pk11_aes_256_ctr;
       
  2686 			else
       
  2687 #endif	/* SOLARIS_AES_CTR */
       
  2688 			*cipher = NULL;
       
  2689 			break;
       
  2690 		}
       
  2691 	return (*cipher != NULL);
       
  2692 	}
       
  2693 
       
  2694 /* ARGSUSED */
       
  2695 static int
       
  2696 pk11_engine_digests(ENGINE *e, const EVP_MD **digest,
       
  2697 	const int **nids, int nid)
       
  2698 	{
       
  2699 	if (!digest)
       
  2700 		return (pk11_usable_digests(nids));
       
  2701 
       
  2702 	switch (nid)
       
  2703 		{
       
  2704 		case NID_md5:
       
  2705 			*digest = &pk11_md5;
       
  2706 			break;
       
  2707 		case NID_sha1:
       
  2708 			*digest = &pk11_sha1;
       
  2709 			break;
       
  2710 		case NID_sha224:
       
  2711 			*digest = &pk11_sha224;
       
  2712 			break;
       
  2713 		case NID_sha256:
       
  2714 			*digest = &pk11_sha256;
       
  2715 			break;
       
  2716 		case NID_sha384:
       
  2717 			*digest = &pk11_sha384;
       
  2718 			break;
       
  2719 		case NID_sha512:
       
  2720 			*digest = &pk11_sha512;
       
  2721 			break;
       
  2722 		default:
       
  2723 			*digest = NULL;
       
  2724 			break;
       
  2725 		}
       
  2726 	return (*digest != NULL);
       
  2727 	}
       
  2728 
       
  2729 
       
  2730 /* Create a secret key object in a PKCS#11 session */
       
  2731 static CK_OBJECT_HANDLE pk11_get_cipher_key(EVP_CIPHER_CTX *ctx,
       
  2732 	const unsigned char *key, CK_KEY_TYPE key_type, PK11_SESSION *sp)
       
  2733 	{
       
  2734 	CK_RV rv;
       
  2735 	CK_OBJECT_HANDLE h_key = CK_INVALID_HANDLE;
       
  2736 	CK_OBJECT_CLASS obj_key = CKO_SECRET_KEY;
       
  2737 	CK_ULONG ul_key_attr_count = 6;
       
  2738 
       
  2739 	CK_ATTRIBUTE  a_key_template[] =
       
  2740 		{
       
  2741 		{CKA_CLASS, (void*) NULL, sizeof (CK_OBJECT_CLASS)},
       
  2742 		{CKA_KEY_TYPE, (void*) NULL, sizeof (CK_KEY_TYPE)},
       
  2743 		{CKA_TOKEN, &pk11_false, sizeof (pk11_false)},
       
  2744 		{CKA_ENCRYPT, &pk11_true, sizeof (pk11_true)},
       
  2745 		{CKA_DECRYPT, &pk11_true, sizeof (pk11_true)},
       
  2746 		{CKA_VALUE, (void*) NULL, 0},
       
  2747 		};
       
  2748 
       
  2749 	/*
       
  2750 	 * Create secret key object in global_session. All other sessions
       
  2751 	 * can use the key handles. Here is why:
       
  2752 	 * OpenSSL will call EncryptInit and EncryptUpdate using a secret key.
       
  2753 	 * It may then call DecryptInit and DecryptUpdate using the same key.
       
  2754 	 * To use the same key object, we need to call EncryptFinal with
       
  2755 	 * a 0 length message. Currently, this does not work for 3DES
       
  2756 	 * mechanism. To get around this problem, we close the session and
       
  2757 	 * then create a new session to use the same key object. When a session
       
  2758 	 * is closed, all the object handles will be invalid. Thus, create key
       
  2759 	 * objects in a global session, an individual session may be closed to
       
  2760 	 * terminate the active operation.
       
  2761 	 */
       
  2762 	CK_SESSION_HANDLE session = global_session;
       
  2763 	a_key_template[0].pValue = &obj_key;
       
  2764 	a_key_template[1].pValue = &key_type;
       
  2765 	a_key_template[5].pValue = (void *) key;
       
  2766 	a_key_template[5].ulValueLen = (unsigned long) ctx->key_len;
       
  2767 
       
  2768 	rv = pFuncList->C_CreateObject(session,
       
  2769 		a_key_template, ul_key_attr_count, &h_key);
       
  2770 	if (rv != CKR_OK)
       
  2771 		{
       
  2772 		PK11err_add_data(PK11_F_GET_CIPHER_KEY, PK11_R_CREATEOBJECT,
       
  2773 		    rv);
       
  2774 		goto err;
       
  2775 		}
       
  2776 
       
  2777 	/*
       
  2778 	 * Save the key information used in this session.
       
  2779 	 * The max can be saved is PK11_KEY_LEN_MAX.
       
  2780 	 */
       
  2781 	sp->opdata_key_len = ctx->key_len > PK11_KEY_LEN_MAX ?
       
  2782 		PK11_KEY_LEN_MAX : ctx->key_len;
       
  2783 	(void) memcpy(sp->opdata_key, key, sp->opdata_key_len);
       
  2784 err:
       
  2785 
       
  2786 	return (h_key);
       
  2787 	}
       
  2788 
       
  2789 static int
       
  2790 md_nid_to_pk11(int nid)
       
  2791 	{
       
  2792 	int i;
       
  2793 
       
  2794 	for (i = 0; i < PK11_DIGEST_MAX; i++)
       
  2795 		if (digests[i].nid == nid)
       
  2796 			return (digests[i].id);
       
  2797 	return (-1);
       
  2798 	}
       
  2799 
       
  2800 static int
       
  2801 pk11_digest_init(EVP_MD_CTX *ctx)
       
  2802 	{
       
  2803 	CK_RV rv;
       
  2804 	CK_MECHANISM mech;
       
  2805 	int index;
       
  2806 	PK11_SESSION *sp;
       
  2807 	PK11_DIGEST *pdp;
       
  2808 	PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
       
  2809 
       
  2810 	state->sp = NULL;
       
  2811 
       
  2812 	index = md_nid_to_pk11(ctx->digest->type);
       
  2813 	if (index < 0 || index >= PK11_DIGEST_MAX)
       
  2814 		return (0);
       
  2815 
       
  2816 	pdp = &digests[index];
       
  2817 	if ((sp = pk11_get_session(OP_DIGEST)) == NULL)
       
  2818 		return (0);
       
  2819 
       
  2820 	/* at present, no parameter is needed for supported digests */
       
  2821 	mech.mechanism = pdp->mech_type;
       
  2822 	mech.pParameter = NULL;
       
  2823 	mech.ulParameterLen = 0;
       
  2824 
       
  2825 	rv = pFuncList->C_DigestInit(sp->session, &mech);
       
  2826 
       
  2827 	if (rv != CKR_OK)
       
  2828 		{
       
  2829 		PK11err_add_data(PK11_F_DIGEST_INIT, PK11_R_DIGESTINIT, rv);
       
  2830 		pk11_return_session(sp, OP_DIGEST);
       
  2831 		return (0);
       
  2832 		}
       
  2833 
       
  2834 	state->sp = sp;
       
  2835 
       
  2836 	return (1);
       
  2837 	}
       
  2838 
       
  2839 static int
       
  2840 pk11_digest_update(EVP_MD_CTX *ctx, const void *data, size_t count)
       
  2841 	{
       
  2842 	CK_RV rv;
       
  2843 	PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
       
  2844 
       
  2845 	/* 0 length message will cause a failure in C_DigestFinal */
       
  2846 	if (count == 0)
       
  2847 		return (1);
       
  2848 
       
  2849 	if (state == NULL || state->sp == NULL)
       
  2850 		return (0);
       
  2851 
       
  2852 	rv = pFuncList->C_DigestUpdate(state->sp->session, (CK_BYTE *) data,
       
  2853 		count);
       
  2854 
       
  2855 	if (rv != CKR_OK)
       
  2856 		{
       
  2857 		PK11err_add_data(PK11_F_DIGEST_UPDATE, PK11_R_DIGESTUPDATE, rv);
       
  2858 		pk11_return_session(state->sp, OP_DIGEST);
       
  2859 		state->sp = NULL;
       
  2860 		return (0);
       
  2861 		}
       
  2862 
       
  2863 	return (1);
       
  2864 	}
       
  2865 
       
  2866 static int
       
  2867 pk11_digest_final(EVP_MD_CTX *ctx, unsigned char *md)
       
  2868 	{
       
  2869 	CK_RV rv;
       
  2870 	unsigned long len;
       
  2871 	PK11_CIPHER_STATE *state = (PK11_CIPHER_STATE *) ctx->md_data;
       
  2872 	len = ctx->digest->md_size;
       
  2873 
       
  2874 	if (state == NULL || state->sp == NULL)
       
  2875 		return (0);
       
  2876 
       
  2877 	rv = pFuncList->C_DigestFinal(state->sp->session, md, &len);
       
  2878 
       
  2879 	if (rv != CKR_OK)
       
  2880 		{
       
  2881 		PK11err_add_data(PK11_F_DIGEST_FINAL, PK11_R_DIGESTFINAL, rv);
       
  2882 		pk11_return_session(state->sp, OP_DIGEST);
       
  2883 		state->sp = NULL;
       
  2884 		return (0);
       
  2885 		}
       
  2886 
       
  2887 	if (ctx->digest->md_size != len)
       
  2888 		return (0);
       
  2889 
       
  2890 	/*
       
  2891 	 * Final is called and digest is returned, so return the session
       
  2892 	 * to the pool
       
  2893 	 */
       
  2894 	pk11_return_session(state->sp, OP_DIGEST);
       
  2895 	state->sp = NULL;
       
  2896 
       
  2897 	return (1);
       
  2898 	}
       
  2899 
       
  2900 static int
       
  2901 pk11_digest_copy(EVP_MD_CTX *to, const EVP_MD_CTX *from)
       
  2902 	{
       
  2903 	CK_RV rv;
       
  2904 	int ret = 0;
       
  2905 	PK11_CIPHER_STATE *state, *state_to;
       
  2906 	CK_BYTE_PTR pstate = NULL;
       
  2907 	CK_ULONG ul_state_len;
       
  2908 
       
  2909 	/* The copy-from state */
       
  2910 	state = (PK11_CIPHER_STATE *) from->md_data;
       
  2911 	if (state == NULL || state->sp == NULL)
       
  2912 		goto err;
       
  2913 
       
  2914 	/* Initialize the copy-to state */
       
  2915 	if (!pk11_digest_init(to))
       
  2916 		goto err;
       
  2917 	state_to = (PK11_CIPHER_STATE *) to->md_data;
       
  2918 
       
  2919 	/* Get the size of the operation state of the copy-from session */
       
  2920 	rv = pFuncList->C_GetOperationState(state->sp->session, NULL,
       
  2921 		&ul_state_len);
       
  2922 
       
  2923 	if (rv != CKR_OK)
       
  2924 		{
       
  2925 		PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE,
       
  2926 		    rv);
       
  2927 		goto err;
       
  2928 		}
       
  2929 	if (ul_state_len == 0)
       
  2930 		{
       
  2931 		goto err;
       
  2932 		}
       
  2933 
       
  2934 	pstate = OPENSSL_malloc(ul_state_len);
       
  2935 	if (pstate == NULL)
       
  2936 		{
       
  2937 		PK11err(PK11_F_DIGEST_COPY, PK11_R_MALLOC_FAILURE);
       
  2938 		goto err;
       
  2939 		}
       
  2940 
       
  2941 	/* Get the operation state of the copy-from session */
       
  2942 	rv = pFuncList->C_GetOperationState(state->sp->session, pstate,
       
  2943 		&ul_state_len);
       
  2944 
       
  2945 	if (rv != CKR_OK)
       
  2946 		{
       
  2947 		PK11err_add_data(PK11_F_DIGEST_COPY, PK11_R_GET_OPERATION_STATE,
       
  2948 		    rv);
       
  2949 		goto err;
       
  2950 		}
       
  2951 
       
  2952 	/* Set the operation state of the copy-to session */
       
  2953 	rv = pFuncList->C_SetOperationState(state_to->sp->session, pstate,
       
  2954 		ul_state_len, 0, 0);
       
  2955 
       
  2956 	if (rv != CKR_OK)
       
  2957 		{
       
  2958 		PK11err_add_data(PK11_F_DIGEST_COPY,
       
  2959 		    PK11_R_SET_OPERATION_STATE, rv);
       
  2960 		goto err;
       
  2961 		}
       
  2962 
       
  2963 	ret = 1;
       
  2964 err:
       
  2965 	if (pstate != NULL)
       
  2966 		OPENSSL_free(pstate);
       
  2967 
       
  2968 	return (ret);
       
  2969 	}
       
  2970 
       
  2971 /* Return any pending session state to the pool */
       
  2972 static int
       
  2973 pk11_digest_cleanup(EVP_MD_CTX *ctx)
       
  2974 	{
       
  2975 	PK11_CIPHER_STATE *state = ctx->md_data;
       
  2976 	unsigned char buf[EVP_MAX_MD_SIZE];
       
  2977 
       
  2978 	if (state != NULL && state->sp != NULL)
       
  2979 		{
       
  2980 		/*
       
  2981 		 * If state->sp is not NULL then pk11_digest_final() has not
       
  2982 		 * been called yet. We must call it now to free any memory
       
  2983 		 * that might have been allocated in the token when
       
  2984 		 * pk11_digest_init() was called. pk11_digest_final()
       
  2985 		 * will return the session to the cache.
       
  2986 		 */
       
  2987 		if (!pk11_digest_final(ctx, buf))
       
  2988 			return (0);
       
  2989 		}
       
  2990 
       
  2991 	return (1);
       
  2992 	}
       
  2993 
       
  2994 /*
       
  2995  * Check if the new key is the same as the key object in the session. If the key
       
  2996  * is the same, no need to create a new key object. Otherwise, the old key
       
  2997  * object needs to be destroyed and a new one will be created. Return 1 for
       
  2998  * cache hit, 0 for cache miss. Note that we must check the key length first
       
  2999  * otherwise we could end up reusing a different, longer key with the same
       
  3000  * prefix.
       
  3001  */
       
  3002 static int check_new_cipher_key(PK11_SESSION *sp, const unsigned char *key,
       
  3003 	int key_len)
       
  3004 	{
       
  3005 	if (sp->opdata_key_len != key_len ||
       
  3006 	    memcmp(sp->opdata_key, key, key_len) != 0)
       
  3007 		{
       
  3008 		(void) pk11_destroy_cipher_key_objects(sp);
       
  3009 		return (0);
       
  3010 		}
       
  3011 	return (1);
       
  3012 	}
       
  3013 
       
  3014 /* Destroy one or more secret key objects. */
       
  3015 static int pk11_destroy_cipher_key_objects(PK11_SESSION *session)
       
  3016 	{
       
  3017 	int ret = 0;
       
  3018 	PK11_SESSION *sp = NULL;
       
  3019 	PK11_SESSION *local_free_session;
       
  3020 
       
  3021 	if (session != NULL)
       
  3022 		local_free_session = session;
       
  3023 	else
       
  3024 		{
       
  3025 		(void) pthread_mutex_lock(session_cache[OP_CIPHER].lock);
       
  3026 		local_free_session = session_cache[OP_CIPHER].head;
       
  3027 		}
       
  3028 
       
  3029 	while ((sp = local_free_session) != NULL)
       
  3030 		{
       
  3031 		local_free_session = sp->next;
       
  3032 
       
  3033 		if (sp->opdata_cipher_key != CK_INVALID_HANDLE)
       
  3034 			{
       
  3035 			/*
       
  3036 			 * The secret key object is created in the
       
  3037 			 * global_session. See pk11_get_cipher_key().
       
  3038 			 */
       
  3039 			if (pk11_destroy_object(global_session,
       
  3040 				sp->opdata_cipher_key, CK_FALSE) == 0)
       
  3041 				goto err;
       
  3042 			sp->opdata_cipher_key = CK_INVALID_HANDLE;
       
  3043 			}
       
  3044 		}
       
  3045 	ret = 1;
       
  3046 err:
       
  3047 
       
  3048 	if (session == NULL)
       
  3049 		(void) pthread_mutex_unlock(session_cache[OP_CIPHER].lock);
       
  3050 
       
  3051 	return (ret);
       
  3052 	}
       
  3053 
       
  3054 
       
  3055 /*
       
  3056  * Public key mechanisms optionally supported
       
  3057  *
       
  3058  * CKM_RSA_X_509
       
  3059  * CKM_RSA_PKCS
       
  3060  * CKM_DSA
       
  3061  *
       
  3062  * The first slot that supports at least one of those mechanisms is chosen as a
       
  3063  * public key slot.
       
  3064  *
       
  3065  * Symmetric ciphers optionally supported
       
  3066  *
       
  3067  * CKM_DES3_CBC
       
  3068  * CKM_DES_CBC
       
  3069  * CKM_AES_CBC
       
  3070  * CKM_DES3_ECB
       
  3071  * CKM_DES_ECB
       
  3072  * CKM_AES_ECB
       
  3073  * CKM_AES_CTR
       
  3074  * CKM_RC4
       
  3075  * CKM_BLOWFISH_CBC
       
  3076  *
       
  3077  * Digests optionally supported
       
  3078  *
       
  3079  * CKM_MD5
       
  3080  * CKM_SHA_1
       
  3081  * CKM_SHA224
       
  3082  * CKM_SHA256
       
  3083  * CKM_SHA384
       
  3084  * CKM_SHA512
       
  3085  *
       
  3086  * The output of this function is a set of global variables indicating which
       
  3087  * mechanisms from RSA, DSA, DH and RAND are present, and also two arrays of
       
  3088  * mechanisms, one for symmetric ciphers and one for digests. Also, 3 global
       
  3089  * variables carry information about which slot was chosen for (a) public key
       
  3090  * mechanisms, (b) random operations, and (c) symmetric ciphers and digests.
       
  3091  */
       
  3092 static int
       
  3093 pk11_choose_slots(int *any_slot_found)
       
  3094 	{
       
  3095 	CK_SLOT_ID_PTR pSlotList = NULL_PTR;
       
  3096 	CK_ULONG ulSlotCount = 0;
       
  3097 	CK_MECHANISM_INFO mech_info;
       
  3098 	CK_TOKEN_INFO token_info;
       
  3099 	int i;
       
  3100 	CK_RV rv;
       
  3101 	CK_SLOT_ID best_pubkey_slot_sofar;
       
  3102 #ifdef DEBUG_SLOT_SELECTION
       
  3103 	CK_SLOT_ID best_cd_slot_sofar;
       
  3104 #endif
       
  3105 	int slot_n_cipher = -1;
       
  3106 	int slot_n_digest = -1;
       
  3107 	CK_SLOT_ID current_slot = 0;
       
  3108 	int current_slot_n_cipher = 0;
       
  3109 	int current_slot_n_digest = 0;
       
  3110 	int best_number_of_mechs = 0;
       
  3111 	int current_number_of_mechs = 0;
       
  3112 	int local_cipher_nids[PK11_CIPHER_MAX];
       
  3113 	int local_digest_nids[PK11_DIGEST_MAX];
       
  3114 
       
  3115 	/* let's initialize the output parameter */
       
  3116 	if (any_slot_found != NULL)
       
  3117 		*any_slot_found = 0;
       
  3118 
       
  3119 	/* Get slot list for memory allocation */
       
  3120 	rv = pFuncList->C_GetSlotList(CK_FALSE, NULL_PTR, &ulSlotCount);
       
  3121 
       
  3122 	if (rv != CKR_OK)
       
  3123 		{
       
  3124 		PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv);
       
  3125 		return (0);
       
  3126 		}
       
  3127 
       
  3128 	/* it's not an error if we didn't find any providers */
       
  3129 	if (ulSlotCount == 0)
       
  3130 		{
       
  3131 		DEBUG_SLOT_SEL("%s: no crypto providers found\n", PK11_DBG);
       
  3132 		return (1);
       
  3133 		}
       
  3134 
       
  3135 	pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID));
       
  3136 
       
  3137 	if (pSlotList == NULL)
       
  3138 		{
       
  3139 		PK11err(PK11_F_CHOOSE_SLOT, PK11_R_MALLOC_FAILURE);
       
  3140 		return (0);
       
  3141 		}
       
  3142 
       
  3143 	/* Get the slot list for processing */
       
  3144 	rv = pFuncList->C_GetSlotList(CK_FALSE, pSlotList, &ulSlotCount);
       
  3145 	if (rv != CKR_OK)
       
  3146 		{
       
  3147 		PK11err_add_data(PK11_F_CHOOSE_SLOT, PK11_R_GETSLOTLIST, rv);
       
  3148 		OPENSSL_free(pSlotList);
       
  3149 		return (0);
       
  3150 		}
       
  3151 
       
  3152 	DEBUG_SLOT_SEL("%s: provider: %s\n", PK11_DBG, def_PK11_LIBNAME);
       
  3153 	DEBUG_SLOT_SEL("%s: number of slots: %d\n", PK11_DBG, ulSlotCount);
       
  3154 
       
  3155 	pubkey_SLOTID = pSlotList[0];
       
  3156 	for (i = 0; i < ulSlotCount; i++)
       
  3157 		{
       
  3158 		CK_BBOOL slot_has_rsa = CK_FALSE;
       
  3159 		CK_BBOOL slot_has_dsa = CK_FALSE;
       
  3160 		CK_BBOOL slot_has_dh = CK_FALSE;
       
  3161 		current_slot = pSlotList[i];
       
  3162 
       
  3163 		DEBUG_SLOT_SEL("%s: == checking slot: %d ==\n", PK11_DBG,
       
  3164 			current_slot);
       
  3165 		rv = pFuncList->C_GetTokenInfo(current_slot, &token_info);
       
  3166 		if (rv != CKR_OK)
       
  3167 			continue;
       
  3168 
       
  3169 		DEBUG_SLOT_SEL("%s: token label: %.32s\n", PK11_DBG,
       
  3170 		    token_info.label);
       
  3171 
       
  3172 		DEBUG_SLOT_SEL("%s: checking rand slots\n", PK11_DBG);
       
  3173 
       
  3174 		if (((token_info.flags & CKF_RNG) != 0) && !pk11_have_random)
       
  3175 			{
       
  3176 			DEBUG_SLOT_SEL(
       
  3177 			    "%s: this token has CKF_RNG flag\n", PK11_DBG);
       
  3178 			pk11_have_random = CK_TRUE;
       
  3179 			rand_SLOTID = current_slot;
       
  3180 			}
       
  3181 
       
  3182 		DEBUG_SLOT_SEL("%s: checking pubkey slots\n", PK11_DBG);
       
  3183 		current_number_of_mechs = 0;
       
  3184 
       
  3185 #ifndef OPENSSL_NO_RSA
       
  3186 		/*
       
  3187 		 * Check if this slot is capable of signing and
       
  3188 		 * verifying with CKM_RSA_PKCS.
       
  3189 		 */
       
  3190 		rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_RSA_PKCS,
       
  3191 			&mech_info);
       
  3192 
       
  3193 		if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
       
  3194 				(mech_info.flags & CKF_VERIFY)))
       
  3195 			{
       
  3196 			/*
       
  3197 			 * Check if this slot is capable of encryption,
       
  3198 			 * decryption, sign, and verify with CKM_RSA_X_509.
       
  3199 			 */
       
  3200 			rv = pFuncList->C_GetMechanismInfo(current_slot,
       
  3201 			    CKM_RSA_X_509, &mech_info);
       
  3202 
       
  3203 			if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
       
  3204 			    (mech_info.flags & CKF_VERIFY) &&
       
  3205 			    (mech_info.flags & CKF_ENCRYPT) &&
       
  3206 			    (mech_info.flags & CKF_VERIFY_RECOVER) &&
       
  3207 			    (mech_info.flags & CKF_DECRYPT)))
       
  3208 				{
       
  3209 				slot_has_rsa = CK_TRUE;
       
  3210 				current_number_of_mechs++;
       
  3211 				}
       
  3212 			}
       
  3213 #endif	/* OPENSSL_NO_RSA */
       
  3214 
       
  3215 #ifndef OPENSSL_NO_DSA
       
  3216 		/*
       
  3217 		 * Check if this slot is capable of signing and
       
  3218 		 * verifying with CKM_DSA.
       
  3219 		 */
       
  3220 		rv = pFuncList->C_GetMechanismInfo(current_slot, CKM_DSA,
       
  3221 			&mech_info);
       
  3222 		if (rv == CKR_OK && ((mech_info.flags & CKF_SIGN) &&
       
  3223 		    (mech_info.flags & CKF_VERIFY)))
       
  3224 			{
       
  3225 			slot_has_dsa = CK_TRUE;
       
  3226 			current_number_of_mechs++;
       
  3227 			}
       
  3228 
       
  3229 #endif	/* OPENSSL_NO_DSA */
       
  3230 
       
  3231 #ifndef OPENSSL_NO_DH
       
  3232 		/*
       
  3233 		 * Check if this slot is capable of DH key generataion and
       
  3234 		 * derivation.
       
  3235 		 */
       
  3236 		rv = pFuncList->C_GetMechanismInfo(current_slot,
       
  3237 		    CKM_DH_PKCS_KEY_PAIR_GEN, &mech_info);
       
  3238 
       
  3239 		if (rv == CKR_OK && (mech_info.flags & CKF_GENERATE_KEY_PAIR))
       
  3240 			{
       
  3241 			rv = pFuncList->C_GetMechanismInfo(current_slot,
       
  3242 				CKM_DH_PKCS_DERIVE, &mech_info);
       
  3243 			if (rv == CKR_OK && (mech_info.flags & CKF_DERIVE))
       
  3244 				{
       
  3245 				slot_has_dh = CK_TRUE;
       
  3246 				current_number_of_mechs++;
       
  3247 				}
       
  3248 			}
       
  3249 #endif	/* OPENSSL_NO_DH */
       
  3250 
       
  3251 		if (current_number_of_mechs > best_number_of_mechs)
       
  3252 			{
       
  3253 			best_pubkey_slot_sofar = current_slot;
       
  3254 			pk11_have_rsa = slot_has_rsa;
       
  3255 			pk11_have_dsa = slot_has_dsa;
       
  3256 			pk11_have_dh = slot_has_dh;
       
  3257 			best_number_of_mechs = current_number_of_mechs;
       
  3258 			/*
       
  3259 			 * Cache the flags for later use. We might need those if
       
  3260 			 * RSA keys by reference feature is used.
       
  3261 			 */
       
  3262 			pubkey_token_flags = token_info.flags;
       
  3263 			DEBUG_SLOT_SEL("%s: pubkey flags changed to "
       
  3264 			    "%lu.\n", PK11_DBG, pubkey_token_flags);
       
  3265 			}
       
  3266 
       
  3267 		DEBUG_SLOT_SEL("%s: checking cipher/digest\n", PK11_DBG);
       
  3268 
       
  3269 		current_slot_n_cipher = 0;
       
  3270 		current_slot_n_digest = 0;
       
  3271 		(void) memset(local_cipher_nids, 0, sizeof (local_cipher_nids));
       
  3272 		(void) memset(local_digest_nids, 0, sizeof (local_digest_nids));
       
  3273 
       
  3274 		pk11_find_symmetric_ciphers(pFuncList, current_slot,
       
  3275 		    &current_slot_n_cipher, local_cipher_nids);
       
  3276 
       
  3277 		pk11_find_digests(pFuncList, current_slot,
       
  3278 		    &current_slot_n_digest, local_digest_nids);
       
  3279 
       
  3280 		DEBUG_SLOT_SEL("%s: current_slot_n_cipher %d\n", PK11_DBG,
       
  3281 			current_slot_n_cipher);
       
  3282 		DEBUG_SLOT_SEL("%s: current_slot_n_digest %d\n", PK11_DBG,
       
  3283 			current_slot_n_digest);
       
  3284 
       
  3285 		/*
       
  3286 		 * If the current slot supports more ciphers/digests than
       
  3287 		 * the previous best one we change the current best to this one,
       
  3288 		 * otherwise leave it where it is.
       
  3289 		 */
       
  3290 		if ((current_slot_n_cipher + current_slot_n_digest) >
       
  3291 		    (slot_n_cipher + slot_n_digest))
       
  3292 			{
       
  3293 			DEBUG_SLOT_SEL("%s: changing best slot to %d\n",
       
  3294 				PK11_DBG, current_slot);
       
  3295 			SLOTID = current_slot;
       
  3296 #ifdef DEBUG_SLOT_SELECTION
       
  3297 			best_cd_slot_sofar = current_slot;
       
  3298 #endif
       
  3299 			cipher_count = slot_n_cipher = current_slot_n_cipher;
       
  3300 			digest_count = slot_n_digest = current_slot_n_digest;
       
  3301 			(void) memcpy(cipher_nids, local_cipher_nids,
       
  3302 			    sizeof (local_cipher_nids));
       
  3303 			(void) memcpy(digest_nids, local_digest_nids,
       
  3304 			    sizeof (local_digest_nids));
       
  3305 			}
       
  3306 
       
  3307 		DEBUG_SLOT_SEL("%s: best cipher/digest slot so far: %d\n",
       
  3308 			PK11_DBG, best_cd_slot_sofar);
       
  3309 		}
       
  3310 
       
  3311 	if (best_number_of_mechs == 0)
       
  3312 		{
       
  3313 		DEBUG_SLOT_SEL("%s: no rsa/dsa/dh\n", PK11_DBG);
       
  3314 		}
       
  3315 	else
       
  3316 		{
       
  3317 		pubkey_SLOTID = best_pubkey_slot_sofar;
       
  3318 		}
       
  3319 
       
  3320 	DEBUG_SLOT_SEL("%s: chosen pubkey slot: %d\n", PK11_DBG, pubkey_SLOTID);
       
  3321 	DEBUG_SLOT_SEL("%s: chosen rand slot: %d\n", PK11_DBG, rand_SLOTID);
       
  3322 	DEBUG_SLOT_SEL("%s: chosen cipher/digest slot: %d\n", PK11_DBG, SLOTID);
       
  3323 	DEBUG_SLOT_SEL("%s: pk11_have_rsa %d\n", PK11_DBG, pk11_have_rsa);
       
  3324 	DEBUG_SLOT_SEL("%s: pk11_have_dsa %d\n", PK11_DBG, pk11_have_dsa);
       
  3325 	DEBUG_SLOT_SEL("%s: pk11_have_dh %d\n", PK11_DBG, pk11_have_dh);
       
  3326 	DEBUG_SLOT_SEL("%s: pk11_have_random %d\n", PK11_DBG, pk11_have_random);
       
  3327 	DEBUG_SLOT_SEL("%s: cipher_count %d\n", PK11_DBG, cipher_count);
       
  3328 	DEBUG_SLOT_SEL("%s: digest_count %d\n", PK11_DBG, digest_count);
       
  3329 
       
  3330 	if (pSlotList != NULL)
       
  3331 		OPENSSL_free(pSlotList);
       
  3332 
       
  3333 #ifdef	SOLARIS_HW_SLOT_SELECTION
       
  3334 	OPENSSL_free(hw_cnids);
       
  3335 	OPENSSL_free(hw_dnids);
       
  3336 #endif	/* SOLARIS_HW_SLOT_SELECTION */
       
  3337 
       
  3338 	if (any_slot_found != NULL)
       
  3339 		*any_slot_found = 1;
       
  3340 	return (1);
       
  3341 	}
       
  3342 
       
  3343 static void pk11_get_symmetric_cipher(CK_FUNCTION_LIST_PTR pflist,
       
  3344     int slot_id, int *current_slot_n_cipher, int *local_cipher_nids,
       
  3345     PK11_CIPHER *cipher)
       
  3346 	{
       
  3347 	static CK_MECHANISM_INFO mech_info;
       
  3348 	static CK_RV rv;
       
  3349 	static CK_MECHANISM_TYPE last_checked_mech = (CK_MECHANISM_TYPE)-1;
       
  3350 
       
  3351 	DEBUG_SLOT_SEL("%s: checking mech: %x", PK11_DBG, cipher->mech_type);
       
  3352 	if (cipher->mech_type != last_checked_mech)
       
  3353 		{
       
  3354 		rv = pflist->C_GetMechanismInfo(slot_id, cipher->mech_type,
       
  3355 		    &mech_info);
       
  3356 		}
       
  3357 
       
  3358 	last_checked_mech = cipher->mech_type;
       
  3359 
       
  3360 	if (rv != CKR_OK)
       
  3361 		{
       
  3362 		DEBUG_SLOT_SEL(" not found\n");
       
  3363 		return;
       
  3364 		}
       
  3365 
       
  3366 	if ((mech_info.flags & CKF_ENCRYPT) &&
       
  3367 	    (mech_info.flags & CKF_DECRYPT))
       
  3368 		{
       
  3369 		if (mech_info.ulMinKeySize > cipher->min_key_len ||
       
  3370 		    mech_info.ulMaxKeySize < cipher->max_key_len)
       
  3371 			{
       
  3372 			DEBUG_SLOT_SEL(" engine key size range <%i-%i> does not"
       
  3373 			    " match mech range <%lu-%lu>\n",
       
  3374 			    cipher->min_key_len, cipher->max_key_len,
       
  3375 			    mech_info.ulMinKeySize, mech_info.ulMaxKeySize);
       
  3376 			return;
       
  3377 			}
       
  3378 #ifdef	SOLARIS_HW_SLOT_SELECTION
       
  3379 		if (nid_in_table(cipher->nid, hw_cnids))
       
  3380 #endif	/* SOLARIS_HW_SLOT_SELECTION */
       
  3381 			{
       
  3382 			DEBUG_SLOT_SEL(" usable\n");
       
  3383 			local_cipher_nids[(*current_slot_n_cipher)++] =
       
  3384 			    cipher->nid;
       
  3385 			}
       
  3386 #ifdef	SOLARIS_HW_SLOT_SELECTION
       
  3387 		else
       
  3388 			{
       
  3389 			DEBUG_SLOT_SEL(
       
  3390 			    " rejected, software implementation only\n");
       
  3391 			}
       
  3392 #endif	/* SOLARIS_HW_SLOT_SELECTION */
       
  3393 		}
       
  3394 	else
       
  3395 		{
       
  3396 		DEBUG_SLOT_SEL(" unusable\n");
       
  3397 		}
       
  3398 
       
  3399 	return;
       
  3400 	}
       
  3401 
       
  3402 static void pk11_get_digest(CK_FUNCTION_LIST_PTR pflist, int slot_id,
       
  3403     int *current_slot_n_digest, int *local_digest_nids, PK11_DIGEST *digest)
       
  3404 	{
       
  3405 	CK_MECHANISM_INFO mech_info;
       
  3406 	CK_RV rv;
       
  3407 
       
  3408 	DEBUG_SLOT_SEL("%s: checking mech: %x", PK11_DBG, digest->mech_type);
       
  3409 	rv = pflist->C_GetMechanismInfo(slot_id, digest->mech_type, &mech_info);
       
  3410 
       
  3411 	if (rv != CKR_OK)
       
  3412 		{
       
  3413 		DEBUG_SLOT_SEL(" not found\n");
       
  3414 		return;
       
  3415 		}
       
  3416 
       
  3417 	if (mech_info.flags & CKF_DIGEST)
       
  3418 		{
       
  3419 #ifdef	SOLARIS_HW_SLOT_SELECTION
       
  3420 		if (nid_in_table(digest->nid, hw_dnids))
       
  3421 #endif	/* SOLARIS_HW_SLOT_SELECTION */
       
  3422 			{
       
  3423 			DEBUG_SLOT_SEL(" usable\n");
       
  3424 			local_digest_nids[(*current_slot_n_digest)++] =
       
  3425 			    digest->nid;
       
  3426 			}
       
  3427 #ifdef	SOLARIS_HW_SLOT_SELECTION
       
  3428 		else
       
  3429 			{
       
  3430 			DEBUG_SLOT_SEL(
       
  3431 			    " rejected, software implementation only\n");
       
  3432 			}
       
  3433 #endif	/* SOLARIS_HW_SLOT_SELECTION */
       
  3434 		}
       
  3435 	else
       
  3436 		{
       
  3437 		DEBUG_SLOT_SEL(" unusable\n");
       
  3438 		}
       
  3439 
       
  3440 	return;
       
  3441 	}
       
  3442 
       
  3443 #ifdef	SOLARIS_AES_CTR
       
  3444 /* create a new NID when we have no OID for that mechanism */
       
  3445 static int pk11_add_NID(char *sn, char *ln)
       
  3446 	{
       
  3447 	ASN1_OBJECT *o;
       
  3448 	int nid;
       
  3449 
       
  3450 	if ((o = ASN1_OBJECT_create(OBJ_new_nid(1), (unsigned char *)"",
       
  3451 	    1, sn, ln)) == NULL)
       
  3452 		{
       
  3453 		return (0);
       
  3454 		}
       
  3455 
       
  3456 	/* will return NID_undef on error */
       
  3457 	nid = OBJ_add_object(o);
       
  3458 	ASN1_OBJECT_free(o);
       
  3459 
       
  3460 	return (nid);
       
  3461 	}
       
  3462 
       
  3463 /*
       
  3464  * Create new NIDs for AES counter mode. OpenSSL doesn't support them now so we
       
  3465  * have to help ourselves here.
       
  3466  */
       
  3467 static int pk11_add_aes_ctr_NIDs(void)
       
  3468 	{
       
  3469 	/* are we already set? */
       
  3470 	if (NID_aes_256_ctr != NID_undef)
       
  3471 		return (1);
       
  3472 
       
  3473 	/*
       
  3474 	 * There are no official names for AES counter modes yet so we just
       
  3475 	 * follow the format of those that exist.
       
  3476 	 */
       
  3477 	if ((NID_aes_128_ctr = pk11_add_NID("AES-128-CTR", "aes-128-ctr")) ==
       
  3478 	    NID_undef)
       
  3479 		goto err;
       
  3480 	ciphers[PK11_AES_128_CTR].nid = pk11_aes_128_ctr.nid = NID_aes_128_ctr;
       
  3481 	if ((NID_aes_192_ctr = pk11_add_NID("AES-192-CTR", "aes-192-ctr")) ==
       
  3482 	    NID_undef)
       
  3483 		goto err;
       
  3484 	ciphers[PK11_AES_192_CTR].nid = pk11_aes_192_ctr.nid = NID_aes_192_ctr;
       
  3485 	if ((NID_aes_256_ctr = pk11_add_NID("AES-256-CTR", "aes-256-ctr")) ==
       
  3486 	    NID_undef)
       
  3487 		goto err;
       
  3488 	ciphers[PK11_AES_256_CTR].nid = pk11_aes_256_ctr.nid = NID_aes_256_ctr;
       
  3489 	return (1);
       
  3490 
       
  3491 err:
       
  3492 	PK11err(PK11_F_ADD_AES_CTR_NIDS, PK11_R_ADD_NID_FAILED);
       
  3493 	return (0);
       
  3494 	}
       
  3495 #endif	/* SOLARIS_AES_CTR */
       
  3496 
       
  3497 /* Find what symmetric ciphers this slot supports. */
       
  3498 static void pk11_find_symmetric_ciphers(CK_FUNCTION_LIST_PTR pflist,
       
  3499     CK_SLOT_ID current_slot, int *current_slot_n_cipher, int *local_cipher_nids)
       
  3500 	{
       
  3501 	int i;
       
  3502 
       
  3503 	for (i = 0; i < PK11_CIPHER_MAX; ++i)
       
  3504 		{
       
  3505 		pk11_get_symmetric_cipher(pflist, current_slot,
       
  3506 		    current_slot_n_cipher, local_cipher_nids, &ciphers[i]);
       
  3507 		}
       
  3508 	}
       
  3509 
       
  3510 /* Find what digest algorithms this slot supports. */
       
  3511 static void pk11_find_digests(CK_FUNCTION_LIST_PTR pflist,
       
  3512     CK_SLOT_ID current_slot, int *current_slot_n_digest, int *local_digest_nids)
       
  3513 	{
       
  3514 	int i;
       
  3515 
       
  3516 	for (i = 0; i < PK11_DIGEST_MAX; ++i)
       
  3517 		{
       
  3518 		pk11_get_digest(pflist, current_slot, current_slot_n_digest,
       
  3519 		    local_digest_nids, &digests[i]);
       
  3520 		}
       
  3521 	}
       
  3522 
       
  3523 #ifdef	SOLARIS_HW_SLOT_SELECTION
       
  3524 /*
       
  3525  * It would be great if we could use pkcs11_kernel directly since this library
       
  3526  * offers hardware slots only. That's the easiest way to achieve the situation
       
  3527  * where we use the hardware accelerators when present and OpenSSL native code
       
  3528  * otherwise. That presumes the fact that OpenSSL native code is faster than the
       
  3529  * code in the soft token. It's a logical assumption - Crypto Framework has some
       
  3530  * inherent overhead so going there for the software implementation of a
       
  3531  * mechanism should be logically slower in contrast to the OpenSSL native code,
       
  3532  * presuming that both implementations are of similar speed. For example, the
       
  3533  * soft token for AES is roughly three times slower than OpenSSL for 64 byte
       
  3534  * blocks and still 20% slower for 8KB blocks. So, if we want to ship products
       
  3535  * that use the PKCS#11 engine by default, we must somehow avoid that regression
       
  3536  * on machines without hardware acceleration. That's why switching to the
       
  3537  * pkcs11_kernel library seems like a very good idea.
       
  3538  *
       
  3539  * The problem is that OpenSSL built with SunStudio is roughly 2x slower for
       
  3540  * asymmetric operations (RSA/DSA/DH) than the soft token built with the same
       
  3541  * compiler. That means that if we switched to pkcs11_kernel from the libpkcs11
       
  3542  * library, we would have had a performance regression on machines without
       
  3543  * hardware acceleration for asymmetric operations for all applications that use
       
  3544  * the PKCS#11 engine. There is one such application - Apache web server since
       
  3545  * it's shipped configured to use the PKCS#11 engine by default. Having said
       
  3546  * that, we can't switch to the pkcs11_kernel library now and have to come with
       
  3547  * a solution that, on non-accelerated machines, uses the OpenSSL native code
       
  3548  * for all symmetric ciphers and digests while it uses the soft token for
       
  3549  * asymmetric operations.
       
  3550  *
       
  3551  * This is the idea: dlopen() pkcs11_kernel directly and find out what
       
  3552  * mechanisms are there. We don't care about duplications (more slots can
       
  3553  * support the same mechanism), we just want to know what mechanisms can be
       
  3554  * possibly supported in hardware on that particular machine. As said before,
       
  3555  * pkcs11_kernel will show you hardware providers only.
       
  3556  *
       
  3557  * Then, we rely on the fact that since we use libpkcs11 library we will find
       
  3558  * the metaslot. When we go through the metaslot's mechanisms for symmetric
       
  3559  * ciphers and digests, we check that any found mechanism is in the table
       
  3560  * created using the pkcs11_kernel library. So, as a result we have two arrays
       
  3561  * of mechanisms that were advertised as supported in hardware which was the
       
  3562  * goal of that whole exercise. Thus, we can use libpkcs11 but avoid soft token
       
  3563  * code for symmetric ciphers and digests. See pk11_choose_slots() for more
       
  3564  * information.
       
  3565  *
       
  3566  * This is Solaris specific code, if SOLARIS_HW_SLOT_SELECTION is not defined
       
  3567  * the code won't be used.
       
  3568  */
       
  3569 #if defined(__sparcv9) || defined(__x86_64) || defined(__amd64)
       
  3570 static const char pkcs11_kernel[] = "/usr/lib/security/64/pkcs11_kernel.so.1";
       
  3571 #else
       
  3572 static const char pkcs11_kernel[] = "/usr/lib/security/pkcs11_kernel.so.1";
       
  3573 #endif
       
  3574 
       
  3575 /*
       
  3576  * Check hardware capabilities of the machines. The output are two lists,
       
  3577  * hw_cnids and hw_dnids, that contain hardware mechanisms found in all hardware
       
  3578  * providers together. They are not sorted and may contain duplicate mechanisms.
       
  3579  */
       
  3580 static int check_hw_mechanisms(void)
       
  3581 	{
       
  3582 	int i;
       
  3583 	CK_RV rv;
       
  3584 	void *handle;
       
  3585 	CK_C_GetFunctionList p;
       
  3586 	CK_TOKEN_INFO token_info;
       
  3587 	CK_ULONG ulSlotCount = 0;
       
  3588 	int n_cipher = 0, n_digest = 0;
       
  3589 	CK_FUNCTION_LIST_PTR pflist = NULL;
       
  3590 	CK_SLOT_ID_PTR pSlotList = NULL_PTR;
       
  3591 	int *tmp_hw_cnids = NULL, *tmp_hw_dnids = NULL;
       
  3592 	int hw_ctable_size, hw_dtable_size;
       
  3593 
       
  3594 	DEBUG_SLOT_SEL("%s: SOLARIS_HW_SLOT_SELECTION code running\n",
       
  3595 	    PK11_DBG);
       
  3596 	/*
       
  3597 	 * Use RTLD_GROUP to limit the pkcs11_kernel provider to its own
       
  3598 	 * symbols, which prevents it from mistakenly accessing C_* functions
       
  3599 	 * from the top-level PKCS#11 library.
       
  3600 	 */
       
  3601 	if ((handle = dlopen(pkcs11_kernel, RTLD_LAZY | RTLD_GROUP)) == NULL)
       
  3602 		{
       
  3603 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
       
  3604 		goto err;
       
  3605 		}
       
  3606 
       
  3607 	if ((p = (CK_C_GetFunctionList)dlsym(handle,
       
  3608 	    PK11_GET_FUNCTION_LIST)) == NULL)
       
  3609 		{
       
  3610 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
       
  3611 		goto err;
       
  3612 		}
       
  3613 
       
  3614 	/* get the full function list from the loaded library */
       
  3615 	if (p(&pflist) != CKR_OK)
       
  3616 		{
       
  3617 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_DSO_FAILURE);
       
  3618 		goto err;
       
  3619 		}
       
  3620 
       
  3621 	rv = pflist->C_Initialize(NULL_PTR);
       
  3622 	if ((rv != CKR_OK) && (rv != CKR_CRYPTOKI_ALREADY_INITIALIZED))
       
  3623 		{
       
  3624 		PK11err_add_data(PK11_F_CHECK_HW_MECHANISMS,
       
  3625 		    PK11_R_INITIALIZE, rv);
       
  3626 		goto err;
       
  3627 		}
       
  3628 
       
  3629 	if (pflist->C_GetSlotList(0, NULL_PTR, &ulSlotCount) != CKR_OK)
       
  3630 		{
       
  3631 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST);
       
  3632 		goto err;
       
  3633 		}
       
  3634 
       
  3635 	/* no slots, set the hw mechanism tables as empty */
       
  3636 	if (ulSlotCount == 0)
       
  3637 		{
       
  3638 		DEBUG_SLOT_SEL("%s: no hardware mechanisms found\n", PK11_DBG);
       
  3639 		hw_cnids = OPENSSL_malloc(sizeof (int));
       
  3640 		hw_dnids = OPENSSL_malloc(sizeof (int));
       
  3641 		if (hw_cnids == NULL || hw_dnids == NULL)
       
  3642 			{
       
  3643 			PK11err(PK11_F_CHECK_HW_MECHANISMS,
       
  3644 			    PK11_R_MALLOC_FAILURE);
       
  3645 			return (0);
       
  3646 			}
       
  3647 		/* this means empty tables */
       
  3648 		hw_cnids[0] = NID_undef;
       
  3649 		hw_dnids[0] = NID_undef;
       
  3650 		return (1);
       
  3651 		}
       
  3652 
       
  3653 	pSlotList = OPENSSL_malloc(ulSlotCount * sizeof (CK_SLOT_ID));
       
  3654 	if (pSlotList == NULL)
       
  3655 		{
       
  3656 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE);
       
  3657 		goto err;
       
  3658 		}
       
  3659 
       
  3660 	/* Get the slot list for processing */
       
  3661 	if (pflist->C_GetSlotList(0, pSlotList, &ulSlotCount) != CKR_OK)
       
  3662 		{
       
  3663 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_GETSLOTLIST);
       
  3664 		goto err;
       
  3665 		}
       
  3666 
       
  3667 	/*
       
  3668 	 * We don't care about duplicate mechanisms in multiple slots and also
       
  3669 	 * reserve one slot for the terminal NID_undef which we use to stop the
       
  3670 	 * search.
       
  3671 	 */
       
  3672 	hw_ctable_size = ulSlotCount * PK11_CIPHER_MAX + 1;
       
  3673 	hw_dtable_size = ulSlotCount * PK11_DIGEST_MAX + 1;
       
  3674 	tmp_hw_cnids = OPENSSL_malloc(hw_ctable_size * sizeof (int));
       
  3675 	tmp_hw_dnids = OPENSSL_malloc(hw_dtable_size * sizeof (int));
       
  3676 	if (tmp_hw_cnids == NULL || tmp_hw_dnids == NULL)
       
  3677 		{
       
  3678 		PK11err(PK11_F_CHECK_HW_MECHANISMS, PK11_R_MALLOC_FAILURE);
       
  3679 		goto err;
       
  3680 		}
       
  3681 
       
  3682 	/*
       
  3683 	 * Do not use memset since we should not rely on the fact that NID_undef
       
  3684 	 * is zero now.
       
  3685 	 */
       
  3686 	for (i = 0; i < hw_ctable_size; ++i)
       
  3687 		tmp_hw_cnids[i] = NID_undef;
       
  3688 	for (i = 0; i < hw_dtable_size; ++i)
       
  3689 		tmp_hw_dnids[i] = NID_undef;
       
  3690 
       
  3691 	DEBUG_SLOT_SEL("%s: provider: %s\n", PK11_DBG, pkcs11_kernel);
       
  3692 	DEBUG_SLOT_SEL("%s: found %d hardware slots\n", PK11_DBG, ulSlotCount);
       
  3693 	DEBUG_SLOT_SEL("%s: now looking for mechs supported in hw\n",
       
  3694 	    PK11_DBG);
       
  3695 
       
  3696 	for (i = 0; i < ulSlotCount; i++)
       
  3697 		{
       
  3698 		if (pflist->C_GetTokenInfo(pSlotList[i], &token_info) != CKR_OK)
       
  3699 			continue;
       
  3700 
       
  3701 		DEBUG_SLOT_SEL("%s: token label: %.32s\n", PK11_DBG,
       
  3702 		    token_info.label);
       
  3703 
       
  3704 		/*
       
  3705 		 * We are filling the hw mech tables here. Global tables are
       
  3706 		 * still NULL so all mechanisms are put into tmp tables.
       
  3707 		 */
       
  3708 		pk11_find_symmetric_ciphers(pflist, pSlotList[i],
       
  3709 		    &n_cipher, tmp_hw_cnids);
       
  3710 		pk11_find_digests(pflist, pSlotList[i],
       
  3711 		    &n_digest, tmp_hw_dnids);
       
  3712 		}
       
  3713 
       
  3714 	/*
       
  3715 	 * Since we are part of a library (libcrypto.so), calling this function
       
  3716 	 * may have side-effects. Also, C_Finalize() is triggered by
       
  3717 	 * dlclose(3C).
       
  3718 	 */
       
  3719 #if 0
       
  3720 	pflist->C_Finalize(NULL);
       
  3721 #endif
       
  3722 	OPENSSL_free(pSlotList);
       
  3723 	(void) dlclose(handle);
       
  3724 	hw_cnids = tmp_hw_cnids;
       
  3725 	hw_dnids = tmp_hw_dnids;
       
  3726 
       
  3727 	DEBUG_SLOT_SEL("%s: hw mechs check complete\n", PK11_DBG);
       
  3728 	return (1);
       
  3729 
       
  3730 err:
       
  3731 	if (pSlotList != NULL)
       
  3732 		OPENSSL_free(pSlotList);
       
  3733 	if (tmp_hw_cnids != NULL)
       
  3734 		OPENSSL_free(tmp_hw_cnids);
       
  3735 	if (tmp_hw_dnids != NULL)
       
  3736 		OPENSSL_free(tmp_hw_dnids);
       
  3737 
       
  3738 	return (0);
       
  3739 	}
       
  3740 
       
  3741 /*
       
  3742  * Check presence of a NID in the table of NIDs. The table may be NULL (i.e.,
       
  3743  * non-existent).
       
  3744  */
       
  3745 static int nid_in_table(int nid, int *nid_table)
       
  3746 	{
       
  3747 	int i = 0;
       
  3748 
       
  3749 	/*
       
  3750 	 * a special case. NULL means that we are initializing a new
       
  3751 	 * table.
       
  3752 	 */
       
  3753 	if (nid_table == NULL)
       
  3754 		return (1);
       
  3755 
       
  3756 	/*
       
  3757 	 * the table is never full, there is always at least one
       
  3758 	 * NID_undef.
       
  3759 	 */
       
  3760 	while (nid_table[i] != NID_undef)
       
  3761 		{
       
  3762 		if (nid_table[i++] == nid)
       
  3763 			{
       
  3764 			DEBUG_SLOT_SEL(" (NID %d in hw table, idx %d)", nid, i);
       
  3765 			return (1);
       
  3766 			}
       
  3767 		}
       
  3768 
       
  3769 	return (0);
       
  3770 	}
       
  3771 #endif	/* SOLARIS_HW_SLOT_SELECTION */
       
  3772 
       
  3773 #endif	/* OPENSSL_NO_HW_PK11 */
       
  3774 #endif	/* OPENSSL_NO_HW */