components/gcc3/g++.1
changeset 246 0878f7720e3e
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/components/gcc3/g++.1	Wed May 18 20:49:57 2011 -0700
@@ -0,0 +1,10679 @@
+.\" Automatically generated by Pod::Man v1.34, Pod::Parser v1.13
+.\"
+.\" Standard preamble:
+.\" ========================================================================
+.de Sh \" Subsection heading
+.br
+.if t .Sp
+.ne 5
+.PP
+\fB\\$1\fR
+.PP
+..
+.de Sp \" Vertical space (when we can't use .PP)
+.if t .sp .5v
+.if n .sp
+..
+.de Vb \" Begin verbatim text
+.ft CW
+.nf
+.ne \\$1
+..
+.de Ve \" End verbatim text
+.ft R
+.fi
+..
+.\" Set up some character translations and predefined strings.  \*(-- will
+.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
+.\" double quote, and \*(R" will give a right double quote.  | will give a
+.\" real vertical bar.  \*(C+ will give a nicer C++.  Capital omega is used to
+.\" do unbreakable dashes and therefore won't be available.  \*(C` and \*(C'
+.\" expand to `' in nroff, nothing in troff, for use with C<>.
+.tr \(*W-|\(bv\*(Tr
+.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
+.ie n \{\
+.    ds -- \(*W-
+.    ds PI pi
+.    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
+.    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
+.    ds L" ""
+.    ds R" ""
+.    ds C` ""
+.    ds C' ""
+'br\}
+.el\{\
+.    ds -- \|\(em\|
+.    ds PI \(*p
+.    ds L" ``
+.    ds R" ''
+'br\}
+.\"
+.\" If the F register is turned on, we'll generate index entries on stderr for
+.\" titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and index
+.\" entries marked with X<> in POD.  Of course, you'll have to process the
+.\" output yourself in some meaningful fashion.
+.if \nF \{\
+.    de IX
+.    tm Index:\\$1\t\\n%\t"\\$2"
+..
+.    nr % 0
+.    rr F
+.\}
+.\"
+.\" For nroff, turn off justification.  Always turn off hyphenation; it makes
+.\" way too many mistakes in technical documents.
+.hy 0
+.if n .na
+.\"
+.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
+.\" Fear.  Run.  Save yourself.  No user-serviceable parts.
+.    \" fudge factors for nroff and troff
+.if n \{\
+.    ds #H 0
+.    ds #V .8m
+.    ds #F .3m
+.    ds #[ \f1
+.    ds #] \fP
+.\}
+.if t \{\
+.    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
+.    ds #V .6m
+.    ds #F 0
+.    ds #[ \&
+.    ds #] \&
+.\}
+.    \" simple accents for nroff and troff
+.if n \{\
+.    ds ' \&
+.    ds ` \&
+.    ds ^ \&
+.    ds , \&
+.    ds ~ ~
+.    ds /
+.\}
+.if t \{\
+.    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
+.    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
+.    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
+.    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
+.    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
+.    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
+.\}
+.    \" troff and (daisy-wheel) nroff accents
+.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
+.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
+.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
+.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
+.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
+.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
+.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
+.ds ae a\h'-(\w'a'u*4/10)'e
+.ds Ae A\h'-(\w'A'u*4/10)'E
+.    \" corrections for vroff
+.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
+.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
+.    \" for low resolution devices (crt and lpr)
+.if \n(.H>23 .if \n(.V>19 \
+\{\
+.    ds : e
+.    ds 8 ss
+.    ds o a
+.    ds d- d\h'-1'\(ga
+.    ds D- D\h'-1'\(hy
+.    ds th \o'bp'
+.    ds Th \o'LP'
+.    ds ae ae
+.    ds Ae AE
+.\}
+.rm #[ #] #H #V #F C
+.\" ========================================================================
+.\"
+.IX Title "GCC 1"
+.TH GCC 1 "2004-11-05" "gcc-3.4.3" "GNU"
+.SH "NAME"
+gcc \- GNU project C and C++ compiler
+.SH "SYNOPSIS"
+.IX Header "SYNOPSIS"
+gcc [\fB\-c\fR|\fB\-S\fR|\fB\-E\fR] [\fB\-std=\fR\fIstandard\fR]
+    [\fB\-g\fR] [\fB\-pg\fR] [\fB\-O\fR\fIlevel\fR]
+    [\fB\-W\fR\fIwarn\fR...] [\fB\-pedantic\fR]
+    [\fB\-I\fR\fIdir\fR...] [\fB\-L\fR\fIdir\fR...]
+    [\fB\-D\fR\fImacro\fR[=\fIdefn\fR]...] [\fB\-U\fR\fImacro\fR]
+    [\fB\-f\fR\fIoption\fR...] [\fB\-m\fR\fImachine-option\fR...]
+    [\fB\-o\fR \fIoutfile\fR] \fIinfile\fR...
+.PP
+Only the most useful options are listed here; see below for the
+remainder.  \fBg++\fR accepts mostly the same options as \fBgcc\fR.
+.SH "DESCRIPTION"
+.IX Header "DESCRIPTION"
+When you invoke \s-1GCC\s0, it normally does preprocessing, compilation,
+assembly and linking.  The ``overall options'' allow you to stop this
+process at an intermediate stage.  For example, the \fB\-c\fR option
+says not to run the linker.  Then the output consists of object files
+output by the assembler.
+.PP
+Other options are passed on to one stage of processing.  Some options
+control the preprocessor and others the compiler itself.  Yet other
+options control the assembler and linker; most of these are not
+documented here, since you rarely need to use any of them.
+.PP
+Most of the command line options that you can use with \s-1GCC\s0 are useful
+for C programs; when an option is only useful with another language
+(usually \*(C+), the explanation says so explicitly.  If the description
+for a particular option does not mention a source language, you can use
+that option with all supported languages.
+.PP
+The \fBgcc\fR program accepts options and file names as operands.  Many
+options have multi-letter names; therefore multiple single-letter options
+may \fInot\fR be grouped: \fB\-dr\fR is very different from \fB\-d\ \-r\fR.
+.PP
+You can mix options and other arguments.  For the most part, the order
+you use doesn't matter.  Order does matter when you use several options
+of the same kind; for example, if you specify \fB\-L\fR more than once,
+the directories are searched in the order specified.
+.PP
+Many options have long names starting with \fB\-f\fR or with
+\&\fB\-W\fR\-\-\-for example, \fB\-fforce\-mem\fR,
+\&\fB\-fstrength\-reduce\fR, \fB\-Wformat\fR and so on.  Most of
+these have both positive and negative forms; the negative form of
+\&\fB\-ffoo\fR would be \fB\-fno\-foo\fR.  This manual documents
+only one of these two forms, whichever one is not the default.
+.SH "OPTIONS"
+.IX Header "OPTIONS"
+.Sh "Option Summary"
+.IX Subsection "Option Summary"
+Here is a summary of all the options, grouped by type.  Explanations are
+in the following sections.
+.IP "\fIOverall Options\fR" 4
+.IX Item "Overall Options"
+\&\fB\-c  \-S  \-E  \-o\fR \fIfile\fR  \fB\-pipe  \-pass\-exit\-codes  
+\&\-x\fR \fIlanguage\fR  \fB\-v  \-###  \-\-help  \-\-target\-help  \-\-version\fR
+.IP "\fIC Language Options\fR" 4
+.IX Item "C Language Options"
+\&\fB\-ansi  \-std=\fR\fIstandard\fR  \fB\-aux\-info\fR \fIfilename\fR 
+\&\fB\-fno\-asm  \-fno\-builtin  \-fno\-builtin\-\fR\fIfunction\fR 
+\&\fB\-fhosted  \-ffreestanding  \-fms\-extensions 
+\&\-trigraphs  \-no\-integrated\-cpp  \-traditional  \-traditional\-cpp 
+\&\-fallow\-single\-precision  \-fcond\-mismatch 
+\&\-fsigned\-bitfields  \-fsigned\-char 
+\&\-funsigned\-bitfields  \-funsigned\-char 
+\&\-fwritable\-strings\fR
+.IP "\fI\*(C+ Language Options\fR" 4
+.IX Item " Language Options"
+\&\fB\-fabi\-version=\fR\fIn\fR  \fB\-fno\-access\-control  \-fcheck\-new 
+\&\-fconserve\-space  \-fno\-const\-strings 
+\&\-fno\-elide\-constructors 
+\&\-fno\-enforce\-eh\-specs 
+\&\-ffor\-scope  \-fno\-for\-scope  \-fno\-gnu\-keywords 
+\&\-fno\-implicit\-templates 
+\&\-fno\-implicit\-inline\-templates 
+\&\-fno\-implement\-inlines  \-fms\-extensions 
+\&\-fno\-nonansi\-builtins  \-fno\-operator\-names 
+\&\-fno\-optional\-diags  \-fpermissive 
+\&\-frepo  \-fno\-rtti  \-fstats  \-ftemplate\-depth\-\fR\fIn\fR 
+\&\fB\-fuse\-cxa\-atexit  \-fno\-weak  \-nostdinc++ 
+\&\-fno\-default\-inline  \-Wabi  \-Wctor\-dtor\-privacy 
+\&\-Wnon\-virtual\-dtor  \-Wreorder 
+\&\-Weffc++  \-Wno\-deprecated 
+\&\-Wno\-non\-template\-friend  \-Wold\-style\-cast 
+\&\-Woverloaded\-virtual  \-Wno\-pmf\-conversions 
+\&\-Wsign\-promo  \-Wsynth\fR
+.IP "\fIObjective-C Language Options\fR" 4
+.IX Item "Objective-C Language Options"
+\&\fB\-fconstant\-string\-class=\fR\fIclass-name\fR 
+\&\fB\-fgnu\-runtime  \-fnext\-runtime 
+\&\-fno\-nil\-receivers 
+\&\-fobjc\-exceptions 
+\&\-freplace\-objc\-classes 
+\&\-fzero\-link 
+\&\-gen\-decls 
+\&\-Wno\-protocol  \-Wselector \-Wundeclared\-selector\fR
+.IP "\fILanguage Independent Options\fR" 4
+.IX Item "Language Independent Options"
+\&\fB\-fmessage\-length=\fR\fIn\fR  
+\&\fB\-fdiagnostics\-show\-location=\fR[\fBonce\fR|\fBevery-line\fR]
+.IP "\fIWarning Options\fR" 4
+.IX Item "Warning Options"
+\&\fB\-fsyntax\-only  \-pedantic  \-pedantic\-errors 
+\&\-w  \-Wextra  \-Wall  \-Waggregate\-return 
+\&\-Wcast\-align  \-Wcast\-qual  \-Wchar\-subscripts  \-Wcomment 
+\&\-Wconversion  \-Wno\-deprecated\-declarations 
+\&\-Wdisabled\-optimization  \-Wno\-div\-by\-zero  \-Wendif\-labels 
+\&\-Werror  \-Werror\-implicit\-function\-declaration 
+\&\-Wfloat\-equal  \-Wformat  \-Wformat=2 
+\&\-Wno\-format\-extra\-args \-Wformat\-nonliteral 
+\&\-Wformat\-security  \-Wformat\-y2k 
+\&\-Wimplicit  \-Wimplicit\-function\-declaration  \-Wimplicit\-int 
+\&\-Wimport  \-Wno\-import  \-Winit\-self  \-Winline 
+\&\-Wno\-invalid\-offsetof  \-Winvalid\-pch 
+\&\-Wlarger\-than\-\fR\fIlen\fR  \fB\-Wlong\-long 
+\&\-Wmain  \-Wmissing\-braces 
+\&\-Wmissing\-format\-attribute  \-Wmissing\-noreturn 
+\&\-Wno\-multichar  \-Wnonnull  \-Wpacked  \-Wpadded 
+\&\-Wparentheses  \-Wpointer\-arith  \-Wredundant\-decls 
+\&\-Wreturn\-type  \-Wsequence\-point  \-Wshadow 
+\&\-Wsign\-compare  \-Wstrict\-aliasing 
+\&\-Wswitch  \-Wswitch\-default  \-Wswitch\-enum 
+\&\-Wsystem\-headers  \-Wtrigraphs  \-Wundef  \-Wuninitialized 
+\&\-Wunknown\-pragmas  \-Wunreachable\-code 
+\&\-Wunused  \-Wunused\-function  \-Wunused\-label  \-Wunused\-parameter 
+\&\-Wunused\-value  \-Wunused\-variable  \-Wwrite\-strings\fR
+.IP "\fIC\-only Warning Options\fR" 4
+.IX Item "C-only Warning Options"
+\&\fB\-Wbad\-function\-cast  \-Wmissing\-declarations 
+\&\-Wmissing\-prototypes  \-Wnested\-externs  \-Wold\-style\-definition 
+\&\-Wstrict\-prototypes  \-Wtraditional 
+\&\-Wdeclaration\-after\-statement\fR
+.IP "\fIDebugging Options\fR" 4
+.IX Item "Debugging Options"
+\&\fB\-d\fR\fIletters\fR  \fB\-dumpspecs  \-dumpmachine  \-dumpversion 
+\&\-fdump\-unnumbered  \-fdump\-translation\-unit\fR[\fB\-\fR\fIn\fR] 
+\&\fB\-fdump\-class\-hierarchy\fR[\fB\-\fR\fIn\fR] 
+\&\fB\-fdump\-tree\-original\fR[\fB\-\fR\fIn\fR]  
+\&\fB\-fdump\-tree\-optimized\fR[\fB\-\fR\fIn\fR] 
+\&\fB\-fdump\-tree\-inlined\fR[\fB\-\fR\fIn\fR] 
+\&\fB\-feliminate\-dwarf2\-dups \-feliminate\-unused\-debug\-types 
+\&\-feliminate\-unused\-debug\-symbols \-fmem\-report \-fprofile\-arcs 
+\&\-frandom\-seed=\fR\fIstring\fR \fB\-fsched\-verbose=\fR\fIn\fR 
+\&\fB\-ftest\-coverage  \-ftime\-report 
+\&\-g  \-g\fR\fIlevel\fR  \fB\-gcoff \-gdwarf\-2 
+\&\-ggdb  \-gstabs  \-gstabs+  \-gvms  \-gxcoff  \-gxcoff+ 
+\&\-p  \-pg  \-print\-file\-name=\fR\fIlibrary\fR  \fB\-print\-libgcc\-file\-name 
+\&\-print\-multi\-directory  \-print\-multi\-lib 
+\&\-print\-prog\-name=\fR\fIprogram\fR  \fB\-print\-search\-dirs  \-Q 
+\&\-save\-temps  \-time\fR
+.IP "\fIOptimization Options\fR" 4
+.IX Item "Optimization Options"
+\&\fB\-falign\-functions=\fR\fIn\fR  \fB\-falign\-jumps=\fR\fIn\fR 
+\&\fB\-falign\-labels=\fR\fIn\fR  \fB\-falign\-loops=\fR\fIn\fR  
+\&\fB\-fbranch\-probabilities \-fprofile\-values \-fvpt \-fbranch\-target\-load\-optimize 
+\&\-fbranch\-target\-load\-optimize2 \-fcaller\-saves  \-fcprop\-registers 
+\&\-fcse\-follow\-jumps  \-fcse\-skip\-blocks  \-fdata\-sections 
+\&\-fdelayed\-branch  \-fdelete\-null\-pointer\-checks 
+\&\-fexpensive\-optimizations  \-ffast\-math  \-ffloat\-store 
+\&\-fforce\-addr  \-fforce\-mem  \-ffunction\-sections 
+\&\-fgcse  \-fgcse\-lm  \-fgcse\-sm  \-fgcse\-las  \-floop\-optimize 
+\&\-fcrossjumping  \-fif\-conversion  \-fif\-conversion2 
+\&\-finline\-functions  \-finline\-limit=\fR\fIn\fR  \fB\-fkeep\-inline\-functions 
+\&\-fkeep\-static\-consts  \-fmerge\-constants  \-fmerge\-all\-constants 
+\&\-fmove\-all\-movables  \-fnew\-ra  \-fno\-branch\-count\-reg 
+\&\-fno\-default\-inline  \-fno\-defer\-pop 
+\&\-fno\-function\-cse  \-fno\-guess\-branch\-probability 
+\&\-fno\-inline  \-fno\-math\-errno  \-fno\-peephole  \-fno\-peephole2 
+\&\-funsafe\-math\-optimizations  \-ffinite\-math\-only 
+\&\-fno\-trapping\-math  \-fno\-zero\-initialized\-in\-bss 
+\&\-fomit\-frame\-pointer  \-foptimize\-register\-move 
+\&\-foptimize\-sibling\-calls  \-fprefetch\-loop\-arrays 
+\&\-fprofile\-generate \-fprofile\-use 
+\&\-freduce\-all\-givs  \-fregmove  \-frename\-registers 
+\&\-freorder\-blocks  \-freorder\-functions 
+\&\-frerun\-cse\-after\-loop  \-frerun\-loop\-opt 
+\&\-frounding\-math \-fschedule\-insns  \-fschedule\-insns2 
+\&\-fno\-sched\-interblock  \-fno\-sched\-spec  \-fsched\-spec\-load 
+\&\-fsched\-spec\-load\-dangerous  
+\&\-fsched\-stalled\-insns=\fR\fIn\fR \fB\-sched\-stalled\-insns\-dep=\fR\fIn\fR 
+\&\fB\-fsched2\-use\-superblocks 
+\&\-fsched2\-use\-traces  \-fsignaling\-nans 
+\&\-fsingle\-precision\-constant  
+\&\-fstrength\-reduce  \-fstrict\-aliasing  \-ftracer  \-fthread\-jumps 
+\&\-funroll\-all\-loops  \-funroll\-loops  \-fpeel\-loops 
+\&\-funswitch\-loops  \-fold\-unroll\-loops  \-fold\-unroll\-all\-loops 
+\&\-\-param\fR \fIname\fR\fB=\fR\fIvalue\fR
+\&\fB\-O  \-O0  \-O1  \-O2  \-O3  \-Os\fR
+.IP "\fIPreprocessor Options\fR" 4
+.IX Item "Preprocessor Options"
+\&\fB\-A\fR\fIquestion\fR\fB=\fR\fIanswer\fR 
+\&\fB\-A\-\fR\fIquestion\fR[\fB=\fR\fIanswer\fR] 
+\&\fB\-C  \-dD  \-dI  \-dM  \-dN 
+\&\-D\fR\fImacro\fR[\fB=\fR\fIdefn\fR]  \fB\-E  \-H 
+\&\-idirafter\fR \fIdir\fR 
+\&\fB\-include\fR \fIfile\fR  \fB\-imacros\fR \fIfile\fR 
+\&\fB\-iprefix\fR \fIfile\fR  \fB\-iwithprefix\fR \fIdir\fR 
+\&\fB\-iwithprefixbefore\fR \fIdir\fR  \fB\-isystem\fR \fIdir\fR 
+\&\fB\-M  \-MM  \-MF  \-MG  \-MP  \-MQ  \-MT  \-nostdinc  
+\&\-P  \-fworking\-directory  \-remap 
+\&\-trigraphs  \-undef  \-U\fR\fImacro\fR  \fB\-Wp,\fR\fIoption\fR 
+\&\fB\-Xpreprocessor\fR \fIoption\fR
+.IP "\fIAssembler Option\fR" 4
+.IX Item "Assembler Option"
+\&\fB\-Wa,\fR\fIoption\fR  \fB\-Xassembler\fR \fIoption\fR
+.IP "\fILinker Options\fR" 4
+.IX Item "Linker Options"
+\&\fIobject-file-name\fR  \fB\-l\fR\fIlibrary\fR 
+\&\fB\-nostartfiles  \-nodefaultlibs  \-nostdlib \-pie 
+\&\-s  \-static  \-static\-libgcc  \-shared  \-shared\-libgcc  \-symbolic 
+\&\-Wl,\fR\fIoption\fR  \fB\-Xlinker\fR \fIoption\fR 
+\&\fB\-u\fR \fIsymbol\fR
+.IP "\fIDirectory Options\fR" 4
+.IX Item "Directory Options"
+\&\fB\-B\fR\fIprefix\fR  \fB\-I\fR\fIdir\fR  \fB\-I\-  \-L\fR\fIdir\fR  \fB\-specs=\fR\fIfile\fR
+.IP "\fITarget Options\fR" 4
+.IX Item "Target Options"
+\&\fB\-V\fR \fIversion\fR  \fB\-b\fR \fImachine\fR
+.IP "\fIMachine Dependent Options\fR" 4
+.IX Item "Machine Dependent Options"
+\&\fIM680x0 Options\fR
+\&\fB\-m68000  \-m68020  \-m68020\-40  \-m68020\-60  \-m68030  \-m68040 
+\&\-m68060  \-mcpu32  \-m5200  \-m68881  \-mbitfield  \-mc68000  \-mc68020   
+\&\-mnobitfield  \-mrtd  \-mshort  \-msoft\-float  \-mpcrel 
+\&\-malign\-int  \-mstrict\-align  \-msep\-data  \-mno\-sep\-data 
+\&\-mshared\-library\-id=n  \-mid\-shared\-library  \-mno\-id\-shared\-library\fR
+.Sp
+\&\fIM68hc1x Options\fR
+\&\fB\-m6811  \-m6812  \-m68hc11  \-m68hc12   \-m68hcs12 
+\&\-mauto\-incdec  \-minmax  \-mlong\-calls  \-mshort 
+\&\-msoft\-reg\-count=\fR\fIcount\fR
+.Sp
+\&\fI\s-1VAX\s0 Options\fR
+\&\fB\-mg  \-mgnu  \-munix\fR
+.Sp
+\&\fI\s-1SPARC\s0 Options\fR
+\&\fB\-mcpu=\fR\fIcpu-type\fR 
+\&\fB\-mtune=\fR\fIcpu-type\fR 
+\&\fB\-mcmodel=\fR\fIcode-model\fR 
+\&\fB\-m32  \-m64  \-mapp\-regs  \-mno\-app\-regs 
+\&\-mfaster\-structs  \-mno\-faster\-structs 
+\&\-mflat  \-mno\-flat  \-mfpu  \-mno\-fpu 
+\&\-mhard\-float  \-msoft\-float 
+\&\-mhard\-quad\-float  \-msoft\-quad\-float 
+\&\-mimpure\-text  \-mno\-impure\-text  \-mlittle\-endian 
+\&\-mstack\-bias  \-mno\-stack\-bias 
+\&\-munaligned\-doubles  \-mno\-unaligned\-doubles 
+\&\-mv8plus  \-mno\-v8plus  \-mvis  \-mno\-vis 
+\&\-mcypress  \-mf930  \-mf934 
+\&\-msparclite  \-msupersparc  \-mv8
+\&\-threads \-pthreads\fR
+.Sp
+\&\fI\s-1ARM\s0 Options\fR
+\&\fB\-mapcs\-frame  \-mno\-apcs\-frame 
+\&\-mapcs\-26  \-mapcs\-32 
+\&\-mapcs\-stack\-check  \-mno\-apcs\-stack\-check 
+\&\-mapcs\-float  \-mno\-apcs\-float 
+\&\-mapcs\-reentrant  \-mno\-apcs\-reentrant 
+\&\-msched\-prolog  \-mno\-sched\-prolog 
+\&\-mlittle\-endian  \-mbig\-endian  \-mwords\-little\-endian 
+\&\-malignment\-traps  \-mno\-alignment\-traps 
+\&\-msoft\-float  \-mhard\-float  \-mfpe 
+\&\-mthumb\-interwork  \-mno\-thumb\-interwork 
+\&\-mcpu=\fR\fIname\fR  \fB\-march=\fR\fIname\fR  \fB\-mfpe=\fR\fIname\fR  
+\&\fB\-mstructure\-size\-boundary=\fR\fIn\fR 
+\&\fB\-mabort\-on\-noreturn 
+\&\-mlong\-calls  \-mno\-long\-calls 
+\&\-msingle\-pic\-base  \-mno\-single\-pic\-base 
+\&\-mpic\-register=\fR\fIreg\fR 
+\&\fB\-mnop\-fun\-dllimport 
+\&\-mcirrus\-fix\-invalid\-insns \-mno\-cirrus\-fix\-invalid\-insns 
+\&\-mpoke\-function\-name 
+\&\-mthumb  \-marm 
+\&\-mtpcs\-frame  \-mtpcs\-leaf\-frame 
+\&\-mcaller\-super\-interworking  \-mcallee\-super\-interworking\fR
+.Sp
+\&\fI\s-1MN10300\s0 Options\fR
+\&\fB\-mmult\-bug  \-mno\-mult\-bug 
+\&\-mam33  \-mno\-am33 
+\&\-mam33\-2  \-mno\-am33\-2 
+\&\-mno\-crt0  \-mrelax\fR
+.Sp
+\&\fIM32R/D Options\fR
+\&\fB\-m32r2 \-m32rx \-m32r 
+\&\-mdebug 
+\&\-malign\-loops \-mno\-align\-loops 
+\&\-missue\-rate=\fR\fInumber\fR 
+\&\fB\-mbranch\-cost=\fR\fInumber\fR 
+\&\fB\-mmodel=\fR\fIcode-size-model-type\fR 
+\&\fB\-msdata=\fR\fIsdata-type\fR 
+\&\fB\-mno\-flush\-func \-mflush\-func=\fR\fIname\fR 
+\&\fB\-mno\-flush\-trap \-mflush\-trap=\fR\fInumber\fR 
+\&\fB\-G\fR \fInum\fR
+.Sp
+\&\fI\s-1RS/6000\s0 and PowerPC Options\fR
+\&\fB\-mcpu=\fR\fIcpu-type\fR 
+\&\fB\-mtune=\fR\fIcpu-type\fR 
+\&\fB\-mpower  \-mno\-power  \-mpower2  \-mno\-power2 
+\&\-mpowerpc  \-mpowerpc64  \-mno\-powerpc 
+\&\-maltivec  \-mno\-altivec 
+\&\-mpowerpc\-gpopt  \-mno\-powerpc\-gpopt 
+\&\-mpowerpc\-gfxopt  \-mno\-powerpc\-gfxopt 
+\&\-mnew\-mnemonics  \-mold\-mnemonics 
+\&\-mfull\-toc   \-mminimal\-toc  \-mno\-fp\-in\-toc  \-mno\-sum\-in\-toc 
+\&\-m64  \-m32  \-mxl\-call  \-mno\-xl\-call  \-mpe 
+\&\-malign\-power  \-malign\-natural 
+\&\-msoft\-float  \-mhard\-float  \-mmultiple  \-mno\-multiple 
+\&\-mstring  \-mno\-string  \-mupdate  \-mno\-update 
+\&\-mfused\-madd  \-mno\-fused\-madd  \-mbit\-align  \-mno\-bit\-align 
+\&\-mstrict\-align  \-mno\-strict\-align  \-mrelocatable 
+\&\-mno\-relocatable  \-mrelocatable\-lib  \-mno\-relocatable\-lib 
+\&\-mtoc  \-mno\-toc  \-mlittle  \-mlittle\-endian  \-mbig  \-mbig\-endian 
+\&\-mdynamic\-no\-pic 
+\&\-mprioritize\-restricted\-insns=\fR\fIpriority\fR 
+\&\fB\-msched\-costly\-dep=\fR\fIdependence_type\fR 
+\&\fB\-minsert\-sched\-nops=\fR\fIscheme\fR 
+\&\fB\-mcall\-sysv  \-mcall\-netbsd 
+\&\-maix\-struct\-return  \-msvr4\-struct\-return 
+\&\-mabi=altivec  \-mabi=no\-altivec 
+\&\-mabi=spe  \-mabi=no\-spe 
+\&\-misel=yes  \-misel=no 
+\&\-mspe=yes  \-mspe=no 
+\&\-mfloat\-gprs=yes  \-mfloat\-gprs=no 
+\&\-mprototype  \-mno\-prototype 
+\&\-msim  \-mmvme  \-mads  \-myellowknife  \-memb  \-msdata 
+\&\-msdata=\fR\fIopt\fR  \fB\-mvxworks  \-mwindiss  \-G\fR \fInum\fR  \fB\-pthread\fR
+.Sp
+\&\fIDarwin Options\fR
+\&\fB\-all_load  \-allowable_client  \-arch  \-arch_errors_fatal 
+\&\-arch_only  \-bind_at_load  \-bundle  \-bundle_loader 
+\&\-client_name  \-compatibility_version  \-current_version 
+\&\-dependency\-file  \-dylib_file  \-dylinker_install_name 
+\&\-dynamic  \-dynamiclib  \-exported_symbols_list 
+\&\-filelist  \-flat_namespace  \-force_cpusubtype_ALL 
+\&\-force_flat_namespace  \-headerpad_max_install_names 
+\&\-image_base  \-init  \-install_name  \-keep_private_externs 
+\&\-multi_module  \-multiply_defined  \-multiply_defined_unused 
+\&\-noall_load  \-nofixprebinding \-nomultidefs  \-noprebind  \-noseglinkedit 
+\&\-pagezero_size  \-prebind  \-prebind_all_twolevel_modules 
+\&\-private_bundle  \-read_only_relocs  \-sectalign 
+\&\-sectobjectsymbols  \-whyload  \-seg1addr 
+\&\-sectcreate  \-sectobjectsymbols  \-sectorder 
+\&\-seg_addr_table  \-seg_addr_table_filename  \-seglinkedit 
+\&\-segprot  \-segs_read_only_addr  \-segs_read_write_addr 
+\&\-single_module  \-static  \-sub_library  \-sub_umbrella 
+\&\-twolevel_namespace  \-umbrella  \-undefined 
+\&\-unexported_symbols_list  \-weak_reference_mismatches 
+\&\-whatsloaded\fR
+.Sp
+\&\fI\s-1MIPS\s0 Options\fR
+\&\fB\-EL  \-EB  \-march=\fR\fIarch\fR  \fB\-mtune=\fR\fIarch\fR 
+\&\fB\-mips1  \-mips2  \-mips3  \-mips4  \-mips32  \-mips32r2  \-mips64 
+\&\-mips16  \-mno\-mips16  \-mabi=\fR\fIabi\fR  \fB\-mabicalls  \-mno\-abicalls 
+\&\-mxgot  \-mno\-xgot  \-membedded\-pic  \-mno\-embedded\-pic 
+\&\-mgp32  \-mgp64  \-mfp32  \-mfp64  \-mhard\-float  \-msoft\-float 
+\&\-msingle\-float  \-mdouble\-float  \-mint64  \-mlong64  \-mlong32 
+\&\-G\fR\fInum\fR  \fB\-membedded\-data  \-mno\-embedded\-data 
+\&\-muninit\-const\-in\-rodata  \-mno\-uninit\-const\-in\-rodata 
+\&\-msplit\-addresses  \-mno\-split\-addresses  
+\&\-mexplicit\-relocs  \-mno\-explicit\-relocs  
+\&\-mrnames  \-mno\-rnames 
+\&\-mcheck\-zero\-division  \-mno\-check\-zero\-division 
+\&\-mmemcpy  \-mno\-memcpy  \-mlong\-calls  \-mno\-long\-calls 
+\&\-mmad  \-mno\-mad  \-mfused\-madd  \-mno\-fused\-madd  \-nocpp 
+\&\-mfix\-sb1  \-mno\-fix\-sb1  \-mflush\-func=\fR\fIfunc\fR 
+\&\fB\-mno\-flush\-func  \-mbranch\-likely  \-mno\-branch\-likely\fR
+.Sp
+\&\fIi386 and x86\-64 Options\fR
+\&\fB\-mtune=\fR\fIcpu-type\fR  \fB\-march=\fR\fIcpu-type\fR 
+\&\fB\-mfpmath=\fR\fIunit\fR 
+\&\fB\-masm=\fR\fIdialect\fR  \fB\-mno\-fancy\-math\-387 
+\&\-mno\-fp\-ret\-in\-387  \-msoft\-float  \-msvr3\-shlib 
+\&\-mno\-wide\-multiply  \-mrtd  \-malign\-double 
+\&\-mpreferred\-stack\-boundary=\fR\fInum\fR 
+\&\fB\-mmmx  \-msse  \-msse2 \-msse3 \-m3dnow 
+\&\-mthreads  \-mno\-align\-stringops  \-minline\-all\-stringops 
+\&\-mpush\-args  \-maccumulate\-outgoing\-args  \-m128bit\-long\-double 
+\&\-m96bit\-long\-double  \-mregparm=\fR\fInum\fR  \fB\-momit\-leaf\-frame\-pointer 
+\&\-mno\-red\-zone \-mno\-tls\-direct\-seg\-refs 
+\&\-mcmodel=\fR\fIcode-model\fR 
+\&\fB\-m32  \-m64\fR
+.Sp
+\&\fI\s-1HPPA\s0 Options\fR
+\&\fB\-march=\fR\fIarchitecture-type\fR 
+\&\fB\-mbig\-switch  \-mdisable\-fpregs  \-mdisable\-indexing 
+\&\-mfast\-indirect\-calls  \-mgas  \-mgnu\-ld   \-mhp\-ld 
+\&\-mjump\-in\-delay \-mlinker\-opt \-mlong\-calls 
+\&\-mlong\-load\-store  \-mno\-big\-switch  \-mno\-disable\-fpregs 
+\&\-mno\-disable\-indexing  \-mno\-fast\-indirect\-calls  \-mno\-gas 
+\&\-mno\-jump\-in\-delay  \-mno\-long\-load\-store 
+\&\-mno\-portable\-runtime  \-mno\-soft\-float 
+\&\-mno\-space\-regs  \-msoft\-float  \-mpa\-risc\-1\-0 
+\&\-mpa\-risc\-1\-1  \-mpa\-risc\-2\-0  \-mportable\-runtime 
+\&\-mschedule=\fR\fIcpu-type\fR  \fB\-mspace\-regs  \-msio  \-mwsio 
+\&\-nolibdld  \-static  \-threads\fR
+.Sp
+\&\fIIntel 960 Options\fR
+\&\fB\-m\fR\fIcpu-type\fR  \fB\-masm\-compat  \-mclean\-linkage 
+\&\-mcode\-align  \-mcomplex\-addr  \-mleaf\-procedures 
+\&\-mic\-compat  \-mic2.0\-compat  \-mic3.0\-compat 
+\&\-mintel\-asm  \-mno\-clean\-linkage  \-mno\-code\-align 
+\&\-mno\-complex\-addr  \-mno\-leaf\-procedures 
+\&\-mno\-old\-align  \-mno\-strict\-align  \-mno\-tail\-call 
+\&\-mnumerics  \-mold\-align  \-msoft\-float  \-mstrict\-align 
+\&\-mtail\-call\fR
+.Sp
+\&\fI\s-1DEC\s0 Alpha Options\fR
+\&\fB\-mno\-fp\-regs  \-msoft\-float  \-malpha\-as  \-mgas 
+\&\-mieee  \-mieee\-with\-inexact  \-mieee\-conformant 
+\&\-mfp\-trap\-mode=\fR\fImode\fR  \fB\-mfp\-rounding\-mode=\fR\fImode\fR 
+\&\fB\-mtrap\-precision=\fR\fImode\fR  \fB\-mbuild\-constants 
+\&\-mcpu=\fR\fIcpu-type\fR  \fB\-mtune=\fR\fIcpu-type\fR 
+\&\fB\-mbwx  \-mmax  \-mfix  \-mcix 
+\&\-mfloat\-vax  \-mfloat\-ieee 
+\&\-mexplicit\-relocs  \-msmall\-data  \-mlarge\-data 
+\&\-msmall\-text  \-mlarge\-text 
+\&\-mmemory\-latency=\fR\fItime\fR
+.Sp
+\&\fI\s-1DEC\s0 Alpha/VMS Options\fR
+\&\fB\-mvms\-return\-codes\fR
+.Sp
+\&\fIH8/300 Options\fR
+\&\fB\-mrelax  \-mh  \-ms  \-mn  \-mint32  \-malign\-300\fR
+.Sp
+\&\fI\s-1SH\s0 Options\fR
+\&\fB\-m1  \-m2  \-m2e  \-m3  \-m3e 
+\&\-m4\-nofpu  \-m4\-single\-only  \-m4\-single  \-m4 
+\&\-m5\-64media  \-m5\-64media\-nofpu 
+\&\-m5\-32media  \-m5\-32media\-nofpu 
+\&\-m5\-compact  \-m5\-compact\-nofpu 
+\&\-mb  \-ml  \-mdalign  \-mrelax 
+\&\-mbigtable  \-mfmovd  \-mhitachi  \-mnomacsave 
+\&\-mieee  \-misize  \-mpadstruct  \-mspace 
+\&\-mprefergot  \-musermode\fR
+.Sp
+\&\fISystem V Options\fR
+\&\fB\-Qy  \-Qn  \-YP,\fR\fIpaths\fR  \fB\-Ym,\fR\fIdir\fR
+.Sp
+\&\fI\s-1ARC\s0 Options\fR
+\&\fB\-EB  \-EL 
+\&\-mmangle\-cpu  \-mcpu=\fR\fIcpu\fR  \fB\-mtext=\fR\fItext-section\fR 
+\&\fB\-mdata=\fR\fIdata-section\fR  \fB\-mrodata=\fR\fIreadonly-data-section\fR
+.Sp
+\&\fITMS320C3x/C4x Options\fR
+\&\fB\-mcpu=\fR\fIcpu\fR  \fB\-mbig  \-msmall  \-mregparm  \-mmemparm 
+\&\-mfast\-fix  \-mmpyi  \-mbk  \-mti  \-mdp\-isr\-reload 
+\&\-mrpts=\fR\fIcount\fR  \fB\-mrptb  \-mdb  \-mloop\-unsigned 
+\&\-mparallel\-insns  \-mparallel\-mpy  \-mpreserve\-float\fR
+.Sp
+\&\fIV850 Options\fR
+\&\fB\-mlong\-calls  \-mno\-long\-calls  \-mep  \-mno\-ep 
+\&\-mprolog\-function  \-mno\-prolog\-function  \-mspace 
+\&\-mtda=\fR\fIn\fR  \fB\-msda=\fR\fIn\fR  \fB\-mzda=\fR\fIn\fR 
+\&\fB\-mapp\-regs  \-mno\-app\-regs 
+\&\-mdisable\-callt  \-mno\-disable\-callt 
+\&\-mv850e1 
+\&\-mv850e 
+\&\-mv850  \-mbig\-switch\fR
+.Sp
+\&\fI\s-1NS32K\s0 Options\fR
+\&\fB\-m32032  \-m32332  \-m32532  \-m32081  \-m32381 
+\&\-mmult\-add  \-mnomult\-add  \-msoft\-float  \-mrtd  \-mnortd 
+\&\-mregparam  \-mnoregparam  \-msb  \-mnosb 
+\&\-mbitfield  \-mnobitfield  \-mhimem  \-mnohimem\fR
+.Sp
+\&\fI\s-1AVR\s0 Options\fR
+\&\fB\-mmcu=\fR\fImcu\fR  \fB\-msize  \-minit\-stack=\fR\fIn\fR  \fB\-mno\-interrupts 
+\&\-mcall\-prologues  \-mno\-tablejump  \-mtiny\-stack\fR
+.Sp
+\&\fIMCore Options\fR
+\&\fB\-mhardlit  \-mno\-hardlit  \-mdiv  \-mno\-div  \-mrelax\-immediates 
+\&\-mno\-relax\-immediates  \-mwide\-bitfields  \-mno\-wide\-bitfields 
+\&\-m4byte\-functions  \-mno\-4byte\-functions  \-mcallgraph\-data 
+\&\-mno\-callgraph\-data  \-mslow\-bytes  \-mno\-slow\-bytes  \-mno\-lsim 
+\&\-mlittle\-endian  \-mbig\-endian  \-m210  \-m340  \-mstack\-increment\fR
+.Sp
+\&\fI\s-1MMIX\s0 Options\fR
+\&\fB\-mlibfuncs  \-mno\-libfuncs  \-mepsilon  \-mno\-epsilon  \-mabi=gnu 
+\&\-mabi=mmixware  \-mzero\-extend  \-mknuthdiv  \-mtoplevel\-symbols 
+\&\-melf  \-mbranch\-predict  \-mno\-branch\-predict  \-mbase\-addresses 
+\&\-mno\-base\-addresses  \-msingle\-exit  \-mno\-single\-exit\fR
+.Sp
+\&\fI\s-1IA\-64\s0 Options\fR
+\&\fB\-mbig\-endian  \-mlittle\-endian  \-mgnu\-as  \-mgnu\-ld  \-mno\-pic 
+\&\-mvolatile\-asm\-stop  \-mb\-step  \-mregister\-names  \-mno\-sdata 
+\&\-mconstant\-gp  \-mauto\-pic  \-minline\-float\-divide\-min\-latency 
+\&\-minline\-float\-divide\-max\-throughput 
+\&\-minline\-int\-divide\-min\-latency 
+\&\-minline\-int\-divide\-max\-throughput  \-mno\-dwarf2\-asm 
+\&\-mfixed\-range=\fR\fIregister-range\fR
+.Sp
+\&\fID30V Options\fR
+\&\fB\-mextmem  \-mextmemory  \-monchip  \-mno\-asm\-optimize 
+\&\-masm\-optimize  \-mbranch\-cost=\fR\fIn\fR  \fB\-mcond\-exec=\fR\fIn\fR
+.Sp
+\&\fIS/390 and zSeries Options\fR
+\&\fB\-mtune=\fR\fIcpu-type\fR  \fB\-march=\fR\fIcpu-type\fR 
+\&\fB\-mhard\-float  \-msoft\-float  \-mbackchain  \-mno\-backchain 
+\&\-msmall\-exec  \-mno\-small\-exec  \-mmvcle \-mno\-mvcle 
+\&\-m64  \-m31  \-mdebug  \-mno\-debug  \-mesa  \-mzarch  \-mfused\-madd  \-mno\-fused\-madd\fR
+.Sp
+\&\fI\s-1CRIS\s0 Options\fR
+\&\fB\-mcpu=\fR\fIcpu\fR  \fB\-march=\fR\fIcpu\fR  \fB\-mtune=\fR\fIcpu\fR 
+\&\fB\-mmax\-stack\-frame=\fR\fIn\fR  \fB\-melinux\-stacksize=\fR\fIn\fR 
+\&\fB\-metrax4  \-metrax100  \-mpdebug  \-mcc\-init  \-mno\-side\-effects 
+\&\-mstack\-align  \-mdata\-align  \-mconst\-align 
+\&\-m32\-bit  \-m16\-bit  \-m8\-bit  \-mno\-prologue\-epilogue  \-mno\-gotplt 
+\&\-melf  \-maout  \-melinux  \-mlinux  \-sim  \-sim2 
+\&\-mmul\-bug\-workaround  \-mno\-mul\-bug\-workaround\fR
+.Sp
+\&\fI\s-1PDP\-11\s0 Options\fR
+\&\fB\-mfpu  \-msoft\-float  \-mac0  \-mno\-ac0  \-m40  \-m45  \-m10 
+\&\-mbcopy  \-mbcopy\-builtin  \-mint32  \-mno\-int16 
+\&\-mint16  \-mno\-int32  \-mfloat32  \-mno\-float64 
+\&\-mfloat64  \-mno\-float32  \-mabshi  \-mno\-abshi 
+\&\-mbranch\-expensive  \-mbranch\-cheap 
+\&\-msplit  \-mno\-split  \-munix\-asm  \-mdec\-asm\fR
+.Sp
+\&\fIXstormy16 Options\fR
+\&\fB\-msim\fR
+.Sp
+\&\fIXtensa Options\fR
+\&\fB\-mconst16 \-mno\-const16 
+\&\-mfused\-madd  \-mno\-fused\-madd 
+\&\-mtext\-section\-literals  \-mno\-text\-section\-literals 
+\&\-mtarget\-align  \-mno\-target\-align 
+\&\-mlongcalls  \-mno\-longcalls\fR
+.Sp
+\&\fI\s-1FRV\s0 Options\fR
+\&\fB\-mgpr\-32  \-mgpr\-64  \-mfpr\-32  \-mfpr\-64 
+\&\-mhard\-float  \-msoft\-float 
+\&\-malloc\-cc  \-mfixed\-cc  \-mdword  \-mno\-dword 
+\&\-mdouble  \-mno\-double 
+\&\-mmedia  \-mno\-media  \-mmuladd  \-mno\-muladd 
+\&\-mlibrary\-pic  \-macc\-4 \-macc\-8 
+\&\-mpack  \-mno\-pack  \-mno\-eflags  \-mcond\-move  \-mno\-cond\-move 
+\&\-mscc  \-mno\-scc  \-mcond\-exec  \-mno\-cond\-exec 
+\&\-mvliw\-branch  \-mno\-vliw\-branch 
+\&\-mmulti\-cond\-exec  \-mno\-multi\-cond\-exec  \-mnested\-cond\-exec 
+\&\-mno\-nested\-cond\-exec  \-mtomcat\-stats 
+\&\-mcpu=\fR\fIcpu\fR
+.IP "\fICode Generation Options\fR" 4
+.IX Item "Code Generation Options"
+\&\fB\-fcall\-saved\-\fR\fIreg\fR  \fB\-fcall\-used\-\fR\fIreg\fR 
+\&\fB\-ffixed\-\fR\fIreg\fR  \fB\-fexceptions 
+\&\-fnon\-call\-exceptions  \-funwind\-tables 
+\&\-fasynchronous\-unwind\-tables 
+\&\-finhibit\-size\-directive  \-finstrument\-functions 
+\&\-fno\-common  \-fno\-ident 
+\&\-fpcc\-struct\-return  \-fpic  \-fPIC \-fpie \-fPIE 
+\&\-freg\-struct\-return  \-fshared\-data  \-fshort\-enums 
+\&\-fshort\-double  \-fshort\-wchar 
+\&\-fverbose\-asm  \-fpack\-struct  \-fstack\-check 
+\&\-fstack\-limit\-register=\fR\fIreg\fR  \fB\-fstack\-limit\-symbol=\fR\fIsym\fR 
+\&\fB\-fargument\-alias  \-fargument\-noalias 
+\&\-fargument\-noalias\-global  \-fleading\-underscore 
+\&\-ftls\-model=\fR\fImodel\fR 
+\&\fB\-ftrapv  \-fwrapv  \-fbounds\-check\fR
+.Sh "Options Controlling the Kind of Output"
+.IX Subsection "Options Controlling the Kind of Output"
+Compilation can involve up to four stages: preprocessing, compilation
+proper, assembly and linking, always in that order.  \s-1GCC\s0 is capable of
+preprocessing and compiling several files either into several
+assembler input files, or into one assembler input file; then each
+assembler input file produces an object file, and linking combines all
+the object files (those newly compiled, and those specified as input)
+into an executable file.
+.PP
+For any given input file, the file name suffix determines what kind of
+compilation is done:
+.IP "\fIfile\fR\fB.c\fR" 4
+.IX Item "file.c"
+C source code which must be preprocessed.
+.IP "\fIfile\fR\fB.i\fR" 4
+.IX Item "file.i"
+C source code which should not be preprocessed.
+.IP "\fIfile\fR\fB.ii\fR" 4
+.IX Item "file.ii"
+\&\*(C+ source code which should not be preprocessed.
+.IP "\fIfile\fR\fB.m\fR" 4
+.IX Item "file.m"
+Objective-C source code.  Note that you must link with the library
+\&\fIlibobjc.a\fR to make an Objective-C program work.
+.IP "\fIfile\fR\fB.mi\fR" 4
+.IX Item "file.mi"
+Objective-C source code which should not be preprocessed.
+.IP "\fIfile\fR\fB.h\fR" 4
+.IX Item "file.h"
+C or \*(C+ header file to be turned into a precompiled header.
+.IP "\fIfile\fR\fB.cc\fR" 4
+.IX Item "file.cc"
+.PD 0
+.IP "\fIfile\fR\fB.cp\fR" 4
+.IX Item "file.cp"
+.IP "\fIfile\fR\fB.cxx\fR" 4
+.IX Item "file.cxx"
+.IP "\fIfile\fR\fB.cpp\fR" 4
+.IX Item "file.cpp"
+.IP "\fIfile\fR\fB.CPP\fR" 4
+.IX Item "file.CPP"
+.IP "\fIfile\fR\fB.c++\fR" 4
+.IX Item "file.c++"
+.IP "\fIfile\fR\fB.C\fR" 4
+.IX Item "file.C"
+.PD
+\&\*(C+ source code which must be preprocessed.  Note that in \fB.cxx\fR,
+the last two letters must both be literally \fBx\fR.  Likewise,
+\&\fB.C\fR refers to a literal capital C.
+.IP "\fIfile\fR\fB.hh\fR" 4
+.IX Item "file.hh"
+.PD 0
+.IP "\fIfile\fR\fB.H\fR" 4
+.IX Item "file.H"
+.PD
+\&\*(C+ header file to be turned into a precompiled header.
+.IP "\fIfile\fR\fB.f\fR" 4
+.IX Item "file.f"
+.PD 0
+.IP "\fIfile\fR\fB.for\fR" 4
+.IX Item "file.for"
+.IP "\fIfile\fR\fB.FOR\fR" 4
+.IX Item "file.FOR"
+.PD
+Fortran source code which should not be preprocessed.
+.IP "\fIfile\fR\fB.F\fR" 4
+.IX Item "file.F"
+.PD 0
+.IP "\fIfile\fR\fB.fpp\fR" 4
+.IX Item "file.fpp"
+.IP "\fIfile\fR\fB.FPP\fR" 4
+.IX Item "file.FPP"
+.PD
+Fortran source code which must be preprocessed (with the traditional
+preprocessor).
+.IP "\fIfile\fR\fB.r\fR" 4
+.IX Item "file.r"
+Fortran source code which must be preprocessed with a \s-1RATFOR\s0
+preprocessor (not included with \s-1GCC\s0).
+.IP "\fIfile\fR\fB.ads\fR" 4
+.IX Item "file.ads"
+Ada source code file which contains a library unit declaration (a
+declaration of a package, subprogram, or generic, or a generic
+instantiation), or a library unit renaming declaration (a package,
+generic, or subprogram renaming declaration).  Such files are also
+called \fIspecs\fR.
+.IP "\fIfile\fR\fB.adb\fR" 4
+.IX Item "file.adb"
+Ada source code file containing a library unit body (a subprogram or
+package body).  Such files are also called \fIbodies\fR.
+.IP "\fIfile\fR\fB.s\fR" 4
+.IX Item "file.s"
+Assembler code.
+.IP "\fIfile\fR\fB.S\fR" 4
+.IX Item "file.S"
+Assembler code which must be preprocessed.
+.IP "\fIother\fR" 4
+.IX Item "other"
+An object file to be fed straight into linking.
+Any file name with no recognized suffix is treated this way.
+.PP
+You can specify the input language explicitly with the \fB\-x\fR option:
+.IP "\fB\-x\fR \fIlanguage\fR" 4
+.IX Item "-x language"
+Specify explicitly the \fIlanguage\fR for the following input files
+(rather than letting the compiler choose a default based on the file
+name suffix).  This option applies to all following input files until
+the next \fB\-x\fR option.  Possible values for \fIlanguage\fR are:
+.Sp
+.Vb 8
+\&        c  c-header  cpp-output
+\&        c++  c++-header  c++-cpp-output
+\&        objective-c  objective-c-header  objc-cpp-output
+\&        assembler  assembler-with-cpp
+\&        ada
+\&        f77  f77-cpp-input  ratfor
+\&        java
+\&        treelang
+.Ve
+.IP "\fB\-x none\fR" 4
+.IX Item "-x none"
+Turn off any specification of a language, so that subsequent files are
+handled according to their file name suffixes (as they are if \fB\-x\fR
+has not been used at all).
+.IP "\fB\-pass\-exit\-codes\fR" 4
+.IX Item "-pass-exit-codes"
+Normally the \fBgcc\fR program will exit with the code of 1 if any
+phase of the compiler returns a non-success return code.  If you specify
+\&\fB\-pass\-exit\-codes\fR, the \fBgcc\fR program will instead return with
+numerically highest error produced by any phase that returned an error
+indication.
+.PP
+If you only want some of the stages of compilation, you can use
+\&\fB\-x\fR (or filename suffixes) to tell \fBgcc\fR where to start, and
+one of the options \fB\-c\fR, \fB\-S\fR, or \fB\-E\fR to say where
+\&\fBgcc\fR is to stop.  Note that some combinations (for example,
+\&\fB\-x cpp-output \-E\fR) instruct \fBgcc\fR to do nothing at all.
+.IP "\fB\-c\fR" 4
+.IX Item "-c"
+Compile or assemble the source files, but do not link.  The linking
+stage simply is not done.  The ultimate output is in the form of an
+object file for each source file.
+.Sp
+By default, the object file name for a source file is made by replacing
+the suffix \fB.c\fR, \fB.i\fR, \fB.s\fR, etc., with \fB.o\fR.
+.Sp
+Unrecognized input files, not requiring compilation or assembly, are
+ignored.
+.IP "\fB\-S\fR" 4
+.IX Item "-S"
+Stop after the stage of compilation proper; do not assemble.  The output
+is in the form of an assembler code file for each non-assembler input
+file specified.
+.Sp
+By default, the assembler file name for a source file is made by
+replacing the suffix \fB.c\fR, \fB.i\fR, etc., with \fB.s\fR.
+.Sp
+Input files that don't require compilation are ignored.
+.IP "\fB\-E\fR" 4
+.IX Item "-E"
+Stop after the preprocessing stage; do not run the compiler proper.  The
+output is in the form of preprocessed source code, which is sent to the
+standard output.
+.Sp
+Input files which don't require preprocessing are ignored.
+.IP "\fB\-o\fR \fIfile\fR" 4
+.IX Item "-o file"
+Place output in file \fIfile\fR.  This applies regardless to whatever
+sort of output is being produced, whether it be an executable file,
+an object file, an assembler file or preprocessed C code.
+.Sp
+If you specify \fB\-o\fR when compiling more than one input file, or
+you are producing an executable file as output, all the source files
+on the command line will be compiled at once.
+.Sp
+If \fB\-o\fR is not specified, the default is to put an executable file
+in \fIa.out\fR, the object file for \fI\fIsource\fI.\fIsuffix\fI\fR in
+\&\fI\fIsource\fI.o\fR, its assembler file in \fI\fIsource\fI.s\fR, and
+all preprocessed C source on standard output.
+.IP "\fB\-v\fR" 4
+.IX Item "-v"
+Print (on standard error output) the commands executed to run the stages
+of compilation.  Also print the version number of the compiler driver
+program and of the preprocessor and the compiler proper.
+.IP "\fB\-###\fR" 4
+.IX Item "-###"
+Like \fB\-v\fR except the commands are not executed and all command
+arguments are quoted.  This is useful for shell scripts to capture the
+driver-generated command lines.
+.IP "\fB\-pipe\fR" 4
+.IX Item "-pipe"
+Use pipes rather than temporary files for communication between the
+various stages of compilation.  This fails to work on some systems where
+the assembler is unable to read from a pipe; but the \s-1GNU\s0 assembler has
+no trouble.
+.IP "\fB\-\-help\fR" 4
+.IX Item "--help"
+Print (on the standard output) a description of the command line options
+understood by \fBgcc\fR.  If the \fB\-v\fR option is also specified
+then \fB\-\-help\fR will also be passed on to the various processes
+invoked by \fBgcc\fR, so that they can display the command line options
+they accept.  If the \fB\-Wextra\fR option is also specified then command
+line options which have no documentation associated with them will also
+be displayed.
+.IP "\fB\-\-target\-help\fR" 4
+.IX Item "--target-help"
+Print (on the standard output) a description of target specific command
+line options for each tool.
+.IP "\fB\-\-version\fR" 4
+.IX Item "--version"
+Display the version number and copyrights of the invoked \s-1GCC\s0.
+.Sh "Compiling \*(C+ Programs"
+.IX Subsection "Compiling  Programs"
+\&\*(C+ source files conventionally use one of the suffixes \fB.C\fR,
+\&\fB.cc\fR, \fB.cpp\fR, \fB.CPP\fR, \fB.c++\fR, \fB.cp\fR, or
+\&\fB.cxx\fR; \*(C+ header files often use \fB.hh\fR or \fB.H\fR; and
+preprocessed \*(C+ files use the suffix \fB.ii\fR.  \s-1GCC\s0 recognizes
+files with these names and compiles them as \*(C+ programs even if you
+call the compiler the same way as for compiling C programs (usually
+with the name \fBgcc\fR).
+.PP
+However, \*(C+ programs often require class libraries as well as a
+compiler that understands the \*(C+ language\-\-\-and under some
+circumstances, you might want to compile programs or header files from
+standard input, or otherwise without a suffix that flags them as \*(C+
+programs.  You might also like to precompile a C header file with a
+\&\fB.h\fR extension to be used in \*(C+ compilations.  \fBg++\fR is a
+program that calls \s-1GCC\s0 with the default language set to \*(C+, and
+automatically specifies linking against the \*(C+ library.  On many
+systems, \fBg++\fR is also installed with the name \fBc++\fR.
+.PP
+When you compile \*(C+ programs, you may specify many of the same
+command-line options that you use for compiling programs in any
+language; or command-line options meaningful for C and related
+languages; or options that are meaningful only for \*(C+ programs.
+.Sh "Options Controlling C Dialect"
+.IX Subsection "Options Controlling C Dialect"
+The following options control the dialect of C (or languages derived
+from C, such as \*(C+ and Objective\-C) that the compiler accepts:
+.IP "\fB\-ansi\fR" 4
+.IX Item "-ansi"
+In C mode, support all \s-1ISO\s0 C90 programs.  In \*(C+ mode,
+remove \s-1GNU\s0 extensions that conflict with \s-1ISO\s0 \*(C+.
+.Sp
+This turns off certain features of \s-1GCC\s0 that are incompatible with \s-1ISO\s0
+C90 (when compiling C code), or of standard \*(C+ (when compiling \*(C+ code),
+such as the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, and
+predefined macros such as \f(CW\*(C`unix\*(C'\fR and \f(CW\*(C`vax\*(C'\fR that identify the
+type of system you are using.  It also enables the undesirable and
+rarely used \s-1ISO\s0 trigraph feature.  For the C compiler,
+it disables recognition of \*(C+ style \fB//\fR comments as well as
+the \f(CW\*(C`inline\*(C'\fR keyword.
+.Sp
+The alternate keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_extension_\|_\*(C'\fR,
+\&\f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR continue to work despite
+\&\fB\-ansi\fR.  You would not want to use them in an \s-1ISO\s0 C program, of
+course, but it is useful to put them in header files that might be included
+in compilations done with \fB\-ansi\fR.  Alternate predefined macros
+such as \f(CW\*(C`_\|_unix_\|_\*(C'\fR and \f(CW\*(C`_\|_vax_\|_\*(C'\fR are also available, with or
+without \fB\-ansi\fR.
+.Sp
+The \fB\-ansi\fR option does not cause non-ISO programs to be
+rejected gratuitously.  For that, \fB\-pedantic\fR is required in
+addition to \fB\-ansi\fR.  
+.Sp
+The macro \f(CW\*(C`_\|_STRICT_ANSI_\|_\*(C'\fR is predefined when the \fB\-ansi\fR
+option is used.  Some header files may notice this macro and refrain
+from declaring certain functions or defining certain macros that the
+\&\s-1ISO\s0 standard doesn't call for; this is to avoid interfering with any
+programs that might use these names for other things.
+.Sp
+Functions which would normally be built in but do not have semantics
+defined by \s-1ISO\s0 C (such as \f(CW\*(C`alloca\*(C'\fR and \f(CW\*(C`ffs\*(C'\fR) are not built-in
+functions with \fB\-ansi\fR is used.  
+.IP "\fB\-std=\fR" 4
+.IX Item "-std="
+Determine the language standard.  This option is currently only
+supported when compiling C or \*(C+.  A value for this option must be
+provided; possible values are
+.RS 4
+.IP "\fBc89\fR" 4
+.IX Item "c89"
+.PD 0
+.IP "\fBiso9899:1990\fR" 4
+.IX Item "iso9899:1990"
+.PD
+\&\s-1ISO\s0 C90 (same as \fB\-ansi\fR).
+.IP "\fBiso9899:199409\fR" 4
+.IX Item "iso9899:199409"
+\&\s-1ISO\s0 C90 as modified in amendment 1.
+.IP "\fBc99\fR" 4
+.IX Item "c99"
+.PD 0
+.IP "\fBc9x\fR" 4
+.IX Item "c9x"
+.IP "\fBiso9899:1999\fR" 4
+.IX Item "iso9899:1999"
+.IP "\fBiso9899:199x\fR" 4
+.IX Item "iso9899:199x"
+.PD
+\&\s-1ISO\s0 C99.  Note that this standard is not yet fully supported; see
+<\fBhttp://gcc.gnu.org/gcc\-3.4/c99status.html\fR> for more information.  The
+names \fBc9x\fR and \fBiso9899:199x\fR are deprecated.
+.IP "\fBgnu89\fR" 4
+.IX Item "gnu89"
+Default, \s-1ISO\s0 C90 plus \s-1GNU\s0 extensions (including some C99 features).
+.IP "\fBgnu99\fR" 4
+.IX Item "gnu99"
+.PD 0
+.IP "\fBgnu9x\fR" 4
+.IX Item "gnu9x"
+.PD
+\&\s-1ISO\s0 C99 plus \s-1GNU\s0 extensions.  When \s-1ISO\s0 C99 is fully implemented in \s-1GCC\s0,
+this will become the default.  The name \fBgnu9x\fR is deprecated.
+.IP "\fBc++98\fR" 4
+.IX Item "c++98"
+The 1998 \s-1ISO\s0 \*(C+ standard plus amendments.
+.IP "\fBgnu++98\fR" 4
+.IX Item "gnu++98"
+The same as \fB\-std=c++98\fR plus \s-1GNU\s0 extensions.  This is the
+default for \*(C+ code.
+.RE
+.RS 4
+.Sp
+Even when this option is not specified, you can still use some of the
+features of newer standards in so far as they do not conflict with
+previous C standards.  For example, you may use \f(CW\*(C`_\|_restrict_\|_\*(C'\fR even
+when \fB\-std=c99\fR is not specified.
+.Sp
+The \fB\-std\fR options specifying some version of \s-1ISO\s0 C have the same
+effects as \fB\-ansi\fR, except that features that were not in \s-1ISO\s0 C90
+but are in the specified version (for example, \fB//\fR comments and
+the \f(CW\*(C`inline\*(C'\fR keyword in \s-1ISO\s0 C99) are not disabled.
+.RE
+.IP "\fB\-aux\-info\fR \fIfilename\fR" 4
+.IX Item "-aux-info filename"
+Output to the given filename prototyped declarations for all functions
+declared and/or defined in a translation unit, including those in header
+files.  This option is silently ignored in any language other than C.
+.Sp
+Besides declarations, the file indicates, in comments, the origin of
+each declaration (source file and line), whether the declaration was
+implicit, prototyped or unprototyped (\fBI\fR, \fBN\fR for new or
+\&\fBO\fR for old, respectively, in the first character after the line
+number and the colon), and whether it came from a declaration or a
+definition (\fBC\fR or \fBF\fR, respectively, in the following
+character).  In the case of function definitions, a K&R\-style list of
+arguments followed by their declarations is also provided, inside
+comments, after the declaration.
+.IP "\fB\-fno\-asm\fR" 4
+.IX Item "-fno-asm"
+Do not recognize \f(CW\*(C`asm\*(C'\fR, \f(CW\*(C`inline\*(C'\fR or \f(CW\*(C`typeof\*(C'\fR as a
+keyword, so that code can use these words as identifiers.  You can use
+the keywords \f(CW\*(C`_\|_asm_\|_\*(C'\fR, \f(CW\*(C`_\|_inline_\|_\*(C'\fR and \f(CW\*(C`_\|_typeof_\|_\*(C'\fR
+instead.  \fB\-ansi\fR implies \fB\-fno\-asm\fR.
+.Sp
+In \*(C+, this switch only affects the \f(CW\*(C`typeof\*(C'\fR keyword, since
+\&\f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`inline\*(C'\fR are standard keywords.  You may want to
+use the \fB\-fno\-gnu\-keywords\fR flag instead, which has the same
+effect.  In C99 mode (\fB\-std=c99\fR or \fB\-std=gnu99\fR), this
+switch only affects the \f(CW\*(C`asm\*(C'\fR and \f(CW\*(C`typeof\*(C'\fR keywords, since
+\&\f(CW\*(C`inline\*(C'\fR is a standard keyword in \s-1ISO\s0 C99.
+.IP "\fB\-fno\-builtin\fR" 4
+.IX Item "-fno-builtin"
+.PD 0
+.IP "\fB\-fno\-builtin\-\fR\fIfunction\fR" 4
+.IX Item "-fno-builtin-function"
+.PD
+Don't recognize built-in functions that do not begin with
+\&\fB_\|_builtin_\fR as prefix.  
+.Sp
+\&\s-1GCC\s0 normally generates special code to handle certain built-in functions
+more efficiently; for instance, calls to \f(CW\*(C`alloca\*(C'\fR may become single
+instructions that adjust the stack directly, and calls to \f(CW\*(C`memcpy\*(C'\fR
+may become inline copy loops.  The resulting code is often both smaller
+and faster, but since the function calls no longer appear as such, you
+cannot set a breakpoint on those calls, nor can you change the behavior
+of the functions by linking with a different library.
+.Sp
+With the \fB\-fno\-builtin\-\fR\fIfunction\fR option
+only the built-in function \fIfunction\fR is
+disabled.  \fIfunction\fR must not begin with \fB_\|_builtin_\fR.  If a
+function is named this is not built-in in this version of \s-1GCC\s0, this
+option is ignored.  There is no corresponding
+\&\fB\-fbuiltin\-\fR\fIfunction\fR option; if you wish to enable
+built-in functions selectively when using \fB\-fno\-builtin\fR or
+\&\fB\-ffreestanding\fR, you may define macros such as:
+.Sp
+.Vb 2
+\&        #define abs(n)          __builtin_abs ((n))
+\&        #define strcpy(d, s)    __builtin_strcpy ((d), (s))
+.Ve
+.IP "\fB\-fhosted\fR" 4
+.IX Item "-fhosted"
+Assert that compilation takes place in a hosted environment.  This implies
+\&\fB\-fbuiltin\fR.  A hosted environment is one in which the
+entire standard library is available, and in which \f(CW\*(C`main\*(C'\fR has a return
+type of \f(CW\*(C`int\*(C'\fR.  Examples are nearly everything except a kernel.
+This is equivalent to \fB\-fno\-freestanding\fR.
+.IP "\fB\-ffreestanding\fR" 4
+.IX Item "-ffreestanding"
+Assert that compilation takes place in a freestanding environment.  This
+implies \fB\-fno\-builtin\fR.  A freestanding environment
+is one in which the standard library may not exist, and program startup may
+not necessarily be at \f(CW\*(C`main\*(C'\fR.  The most obvious example is an \s-1OS\s0 kernel.
+This is equivalent to \fB\-fno\-hosted\fR.
+.IP "\fB\-fms\-extensions\fR" 4
+.IX Item "-fms-extensions"
+Accept some non-standard constructs used in Microsoft header files.
+.IP "\fB\-trigraphs\fR" 4
+.IX Item "-trigraphs"
+Support \s-1ISO\s0 C trigraphs.  The \fB\-ansi\fR option (and \fB\-std\fR
+options for strict \s-1ISO\s0 C conformance) implies \fB\-trigraphs\fR.
+.IP "\fB\-no\-integrated\-cpp\fR" 4
+.IX Item "-no-integrated-cpp"
+Performs a compilation in two passes: preprocessing and compiling.  This
+option allows a user supplied \*(L"cc1\*(R", \*(L"cc1plus\*(R", or \*(L"cc1obj\*(R" via the
+\&\fB\-B\fR option. The user supplied compilation step can then add in
+an additional preprocessing step after normal preprocessing but before
+compiling. The default is to use the integrated cpp (internal cpp)
+.Sp
+The semantics of this option will change if \*(L"cc1\*(R", \*(L"cc1plus\*(R", and
+\&\*(L"cc1obj\*(R" are merged.
+.IP "\fB\-traditional\fR" 4
+.IX Item "-traditional"
+.PD 0
+.IP "\fB\-traditional\-cpp\fR" 4
+.IX Item "-traditional-cpp"
+.PD
+Formerly, these options caused \s-1GCC\s0 to attempt to emulate a pre-standard
+C compiler.  They are now only supported with the \fB\-E\fR switch.
+The preprocessor continues to support a pre-standard mode.  See the \s-1GNU\s0
+\&\s-1CPP\s0 manual for details.
+.IP "\fB\-fcond\-mismatch\fR" 4
+.IX Item "-fcond-mismatch"
+Allow conditional expressions with mismatched types in the second and
+third arguments.  The value of such an expression is void.  This option
+is not supported for \*(C+.
+.IP "\fB\-funsigned\-char\fR" 4
+.IX Item "-funsigned-char"
+Let the type \f(CW\*(C`char\*(C'\fR be unsigned, like \f(CW\*(C`unsigned char\*(C'\fR.
+.Sp
+Each kind of machine has a default for what \f(CW\*(C`char\*(C'\fR should
+be.  It is either like \f(CW\*(C`unsigned char\*(C'\fR by default or like
+\&\f(CW\*(C`signed char\*(C'\fR by default.
+.Sp
+Ideally, a portable program should always use \f(CW\*(C`signed char\*(C'\fR or
+\&\f(CW\*(C`unsigned char\*(C'\fR when it depends on the signedness of an object.
+But many programs have been written to use plain \f(CW\*(C`char\*(C'\fR and
+expect it to be signed, or expect it to be unsigned, depending on the
+machines they were written for.  This option, and its inverse, let you
+make such a program work with the opposite default.
+.Sp
+The type \f(CW\*(C`char\*(C'\fR is always a distinct type from each of
+\&\f(CW\*(C`signed char\*(C'\fR or \f(CW\*(C`unsigned char\*(C'\fR, even though its behavior
+is always just like one of those two.
+.IP "\fB\-fsigned\-char\fR" 4
+.IX Item "-fsigned-char"
+Let the type \f(CW\*(C`char\*(C'\fR be signed, like \f(CW\*(C`signed char\*(C'\fR.
+.Sp
+Note that this is equivalent to \fB\-fno\-unsigned\-char\fR, which is
+the negative form of \fB\-funsigned\-char\fR.  Likewise, the option
+\&\fB\-fno\-signed\-char\fR is equivalent to \fB\-funsigned\-char\fR.
+.IP "\fB\-fsigned\-bitfields\fR" 4
+.IX Item "-fsigned-bitfields"
+.PD 0
+.IP "\fB\-funsigned\-bitfields\fR" 4
+.IX Item "-funsigned-bitfields"
+.IP "\fB\-fno\-signed\-bitfields\fR" 4
+.IX Item "-fno-signed-bitfields"
+.IP "\fB\-fno\-unsigned\-bitfields\fR" 4
+.IX Item "-fno-unsigned-bitfields"
+.PD
+These options control whether a bit-field is signed or unsigned, when the
+declaration does not use either \f(CW\*(C`signed\*(C'\fR or \f(CW\*(C`unsigned\*(C'\fR.  By
+default, such a bit-field is signed, because this is consistent: the
+basic integer types such as \f(CW\*(C`int\*(C'\fR are signed types.
+.IP "\fB\-fwritable\-strings\fR" 4
+.IX Item "-fwritable-strings"
+Store string constants in the writable data segment and don't uniquize
+them.  This is for compatibility with old programs which assume they can
+write into string constants.
+.Sp
+Writing into string constants is a very bad idea; ``constants'' should
+be constant.
+.Sp
+This option is deprecated.
+.Sh "Options Controlling \*(C+ Dialect"
+.IX Subsection "Options Controlling  Dialect"
+This section describes the command-line options that are only meaningful
+for \*(C+ programs; but you can also use most of the \s-1GNU\s0 compiler options
+regardless of what language your program is in.  For example, you
+might compile a file \f(CW\*(C`firstClass.C\*(C'\fR like this:
+.PP
+.Vb 1
+\&        g++ -g -frepo -O -c firstClass.C
+.Ve
+.PP
+In this example, only \fB\-frepo\fR is an option meant
+only for \*(C+ programs; you can use the other options with any
+language supported by \s-1GCC\s0.
+.PP
+Here is a list of options that are \fIonly\fR for compiling \*(C+ programs:
+.IP "\fB\-fabi\-version=\fR\fIn\fR" 4
+.IX Item "-fabi-version=n"
+Use version \fIn\fR of the \*(C+ \s-1ABI\s0.  Version 2 is the version of the
+\&\*(C+ \s-1ABI\s0 that first appeared in G++ 3.4.  Version 1 is the version of
+the \*(C+ \s-1ABI\s0 that first appeared in G++ 3.2.  Version 0 will always be
+the version that conforms most closely to the \*(C+ \s-1ABI\s0 specification.
+Therefore, the \s-1ABI\s0 obtained using version 0 will change as \s-1ABI\s0 bugs
+are fixed.
+.Sp
+The default is version 2.
+.IP "\fB\-fno\-access\-control\fR" 4
+.IX Item "-fno-access-control"
+Turn off all access checking.  This switch is mainly useful for working
+around bugs in the access control code.
+.IP "\fB\-fcheck\-new\fR" 4
+.IX Item "-fcheck-new"
+Check that the pointer returned by \f(CW\*(C`operator new\*(C'\fR is non-null
+before attempting to modify the storage allocated.  This check is
+normally unnecessary because the \*(C+ standard specifies that
+\&\f(CW\*(C`operator new\*(C'\fR will only return \f(CW0\fR if it is declared
+\&\fB\f(BIthrow()\fB\fR, in which case the compiler will always check the
+return value even without this option.  In all other cases, when
+\&\f(CW\*(C`operator new\*(C'\fR has a non-empty exception specification, memory
+exhaustion is signalled by throwing \f(CW\*(C`std::bad_alloc\*(C'\fR.  See also
+\&\fBnew (nothrow)\fR.
+.IP "\fB\-fconserve\-space\fR" 4
+.IX Item "-fconserve-space"
+Put uninitialized or runtime-initialized global variables into the
+common segment, as C does.  This saves space in the executable at the
+cost of not diagnosing duplicate definitions.  If you compile with this
+flag and your program mysteriously crashes after \f(CW\*(C`main()\*(C'\fR has
+completed, you may have an object that is being destroyed twice because
+two definitions were merged.
+.Sp
+This option is no longer useful on most targets, now that support has
+been added for putting variables into \s-1BSS\s0 without making them common.
+.IP "\fB\-fno\-const\-strings\fR" 4
+.IX Item "-fno-const-strings"
+Give string constants type \f(CW\*(C`char *\*(C'\fR instead of type \f(CW\*(C`const
+char *\*(C'\fR.  By default, G++ uses type \f(CW\*(C`const char *\*(C'\fR as required by
+the standard.  Even if you use \fB\-fno\-const\-strings\fR, you cannot
+actually modify the value of a string constant, unless you also use
+\&\fB\-fwritable\-strings\fR.
+.Sp
+This option might be removed in a future release of G++.  For maximum
+portability, you should structure your code so that it works with
+string constants that have type \f(CW\*(C`const char *\*(C'\fR.
+.IP "\fB\-fno\-elide\-constructors\fR" 4
+.IX Item "-fno-elide-constructors"
+The \*(C+ standard allows an implementation to omit creating a temporary
+which is only used to initialize another object of the same type.
+Specifying this option disables that optimization, and forces G++ to
+call the copy constructor in all cases.
+.IP "\fB\-fno\-enforce\-eh\-specs\fR" 4
+.IX Item "-fno-enforce-eh-specs"
+Don't check for violation of exception specifications at runtime.  This
+option violates the \*(C+ standard, but may be useful for reducing code
+size in production builds, much like defining \fB\s-1NDEBUG\s0\fR.  The compiler
+will still optimize based on the exception specifications.
+.IP "\fB\-ffor\-scope\fR" 4
+.IX Item "-ffor-scope"
+.PD 0
+.IP "\fB\-fno\-for\-scope\fR" 4
+.IX Item "-fno-for-scope"
+.PD
+If \fB\-ffor\-scope\fR is specified, the scope of variables declared in
+a \fIfor-init-statement\fR is limited to the \fBfor\fR loop itself,
+as specified by the \*(C+ standard.
+If \fB\-fno\-for\-scope\fR is specified, the scope of variables declared in
+a \fIfor-init-statement\fR extends to the end of the enclosing scope,
+as was the case in old versions of G++, and other (traditional)
+implementations of \*(C+.
+.Sp
+The default if neither flag is given to follow the standard,
+but to allow and give a warning for old-style code that would
+otherwise be invalid, or have different behavior.
+.IP "\fB\-fno\-gnu\-keywords\fR" 4
+.IX Item "-fno-gnu-keywords"
+Do not recognize \f(CW\*(C`typeof\*(C'\fR as a keyword, so that code can use this
+word as an identifier.  You can use the keyword \f(CW\*(C`_\|_typeof_\|_\*(C'\fR instead.
+\&\fB\-ansi\fR implies \fB\-fno\-gnu\-keywords\fR.
+.IP "\fB\-fno\-implicit\-templates\fR" 4
+.IX Item "-fno-implicit-templates"
+Never emit code for non-inline templates which are instantiated
+implicitly (i.e. by use); only emit code for explicit instantiations.
+.IP "\fB\-fno\-implicit\-inline\-templates\fR" 4
+.IX Item "-fno-implicit-inline-templates"
+Don't emit code for implicit instantiations of inline templates, either.
+The default is to handle inlines differently so that compiles with and
+without optimization will need the same set of explicit instantiations.
+.IP "\fB\-fno\-implement\-inlines\fR" 4
+.IX Item "-fno-implement-inlines"
+To save space, do not emit out-of-line copies of inline functions
+controlled by \fB#pragma implementation\fR.  This will cause linker
+errors if these functions are not inlined everywhere they are called.
+.IP "\fB\-fms\-extensions\fR" 4
+.IX Item "-fms-extensions"
+Disable pedantic warnings about constructs used in \s-1MFC\s0, such as implicit
+int and getting a pointer to member function via non-standard syntax.
+.IP "\fB\-fno\-nonansi\-builtins\fR" 4
+.IX Item "-fno-nonansi-builtins"
+Disable built-in declarations of functions that are not mandated by
+\&\s-1ANSI/ISO\s0 C.  These include \f(CW\*(C`ffs\*(C'\fR, \f(CW\*(C`alloca\*(C'\fR, \f(CW\*(C`_exit\*(C'\fR,
+\&\f(CW\*(C`index\*(C'\fR, \f(CW\*(C`bzero\*(C'\fR, \f(CW\*(C`conjf\*(C'\fR, and other related functions.
+.IP "\fB\-fno\-operator\-names\fR" 4
+.IX Item "-fno-operator-names"
+Do not treat the operator name keywords \f(CW\*(C`and\*(C'\fR, \f(CW\*(C`bitand\*(C'\fR,
+\&\f(CW\*(C`bitor\*(C'\fR, \f(CW\*(C`compl\*(C'\fR, \f(CW\*(C`not\*(C'\fR, \f(CW\*(C`or\*(C'\fR and \f(CW\*(C`xor\*(C'\fR as
+synonyms as keywords.
+.IP "\fB\-fno\-optional\-diags\fR" 4
+.IX Item "-fno-optional-diags"
+Disable diagnostics that the standard says a compiler does not need to
+issue.  Currently, the only such diagnostic issued by G++ is the one for
+a name having multiple meanings within a class.
+.IP "\fB\-fpermissive\fR" 4
+.IX Item "-fpermissive"
+Downgrade some diagnostics about nonconformant code from errors to
+warnings.  Thus, using \fB\-fpermissive\fR will allow some
+nonconforming code to compile.
+.IP "\fB\-frepo\fR" 4
+.IX Item "-frepo"
+Enable automatic template instantiation at link time.  This option also
+implies \fB\-fno\-implicit\-templates\fR.  
+.IP "\fB\-fno\-rtti\fR" 4
+.IX Item "-fno-rtti"
+Disable generation of information about every class with virtual
+functions for use by the \*(C+ runtime type identification features
+(\fBdynamic_cast\fR and \fBtypeid\fR).  If you don't use those parts
+of the language, you can save some space by using this flag.  Note that
+exception handling uses the same information, but it will generate it as
+needed.
+.IP "\fB\-fstats\fR" 4
+.IX Item "-fstats"
+Emit statistics about front-end processing at the end of the compilation.
+This information is generally only useful to the G++ development team.
+.IP "\fB\-ftemplate\-depth\-\fR\fIn\fR" 4
+.IX Item "-ftemplate-depth-n"
+Set the maximum instantiation depth for template classes to \fIn\fR.
+A limit on the template instantiation depth is needed to detect
+endless recursions during template class instantiation.  \s-1ANSI/ISO\s0 \*(C+
+conforming programs must not rely on a maximum depth greater than 17.
+.IP "\fB\-fuse\-cxa\-atexit\fR" 4
+.IX Item "-fuse-cxa-atexit"
+Register destructors for objects with static storage duration with the
+\&\f(CW\*(C`_\|_cxa_atexit\*(C'\fR function rather than the \f(CW\*(C`atexit\*(C'\fR function.
+This option is required for fully standards-compliant handling of static
+destructors, but will only work if your C library supports
+\&\f(CW\*(C`_\|_cxa_atexit\*(C'\fR.
+.IP "\fB\-fno\-weak\fR" 4
+.IX Item "-fno-weak"
+Do not use weak symbol support, even if it is provided by the linker.
+By default, G++ will use weak symbols if they are available.  This
+option exists only for testing, and should not be used by end\-users;
+it will result in inferior code and has no benefits.  This option may
+be removed in a future release of G++.
+.IP "\fB\-nostdinc++\fR" 4
+.IX Item "-nostdinc++"
+Do not search for header files in the standard directories specific to
+\&\*(C+, but do still search the other standard directories.  (This option
+is used when building the \*(C+ library.)
+.PP
+In addition, these optimization, warning, and code generation options
+have meanings only for \*(C+ programs:
+.IP "\fB\-fno\-default\-inline\fR" 4
+.IX Item "-fno-default-inline"
+Do not assume \fBinline\fR for functions defined inside a class scope.
+  Note that these
+functions will have linkage like inline functions; they just won't be
+inlined by default.
+.IP "\fB\-Wabi\fR (\*(C+ only)" 4
+.IX Item "-Wabi ( only)"
+Warn when G++ generates code that is probably not compatible with the
+vendor-neutral \*(C+ \s-1ABI\s0.  Although an effort has been made to warn about
+all such cases, there are probably some cases that are not warned about,
+even though G++ is generating incompatible code.  There may also be
+cases where warnings are emitted even though the code that is generated
+will be compatible.
+.Sp
+You should rewrite your code to avoid these warnings if you are
+concerned about the fact that code generated by G++ may not be binary
+compatible with code generated by other compilers.
+.Sp
+The known incompatibilities at this point include:
+.RS 4
+.IP "\(bu" 4
+Incorrect handling of tail-padding for bit\-fields.  G++ may attempt to
+pack data into the same byte as a base class.  For example:
+.Sp
+.Vb 2
+\&        struct A { virtual void f(); int f1 : 1; };
+\&        struct B : public A { int f2 : 1; };
+.Ve
+.Sp
+In this case, G++ will place \f(CW\*(C`B::f2\*(C'\fR into the same byte
+as\f(CW\*(C`A::f1\*(C'\fR; other compilers will not.  You can avoid this problem
+by explicitly padding \f(CW\*(C`A\*(C'\fR so that its size is a multiple of the
+byte size on your platform; that will cause G++ and other compilers to
+layout \f(CW\*(C`B\*(C'\fR identically.
+.IP "\(bu" 4
+Incorrect handling of tail-padding for virtual bases.  G++ does not use
+tail padding when laying out virtual bases.  For example:
+.Sp
+.Vb 3
+\&        struct A { virtual void f(); char c1; };
+\&        struct B { B(); char c2; };
+\&        struct C : public A, public virtual B {};
+.Ve
+.Sp
+In this case, G++ will not place \f(CW\*(C`B\*(C'\fR into the tail-padding for
+\&\f(CW\*(C`A\*(C'\fR; other compilers will.  You can avoid this problem by
+explicitly padding \f(CW\*(C`A\*(C'\fR so that its size is a multiple of its
+alignment (ignoring virtual base classes); that will cause G++ and other
+compilers to layout \f(CW\*(C`C\*(C'\fR identically.
+.IP "\(bu" 4
+Incorrect handling of bit-fields with declared widths greater than that
+of their underlying types, when the bit-fields appear in a union.  For
+example:
+.Sp
+.Vb 1
+\&        union U { int i : 4096; };
+.Ve
+.Sp
+Assuming that an \f(CW\*(C`int\*(C'\fR does not have 4096 bits, G++ will make the
+union too small by the number of bits in an \f(CW\*(C`int\*(C'\fR.
+.IP "\(bu" 4
+Empty classes can be placed at incorrect offsets.  For example:
+.Sp
+.Vb 1
+\&        struct A {};
+.Ve
+.Sp
+.Vb 4
+\&        struct B {
+\&          A a;
+\&          virtual void f ();
+\&        };
+.Ve
+.Sp
+.Vb 1
+\&        struct C : public B, public A {};
+.Ve
+.Sp
+G++ will place the \f(CW\*(C`A\*(C'\fR base class of \f(CW\*(C`C\*(C'\fR at a nonzero offset;
+it should be placed at offset zero.  G++ mistakenly believes that the
+\&\f(CW\*(C`A\*(C'\fR data member of \f(CW\*(C`B\*(C'\fR is already at offset zero.
+.IP "\(bu" 4
+Names of template functions whose types involve \f(CW\*(C`typename\*(C'\fR or
+template template parameters can be mangled incorrectly.
+.Sp
+.Vb 2
+\&        template <typename Q>
+\&        void f(typename Q::X) {}
+.Ve
+.Sp
+.Vb 2
+\&        template <template <typename> class Q>
+\&        void f(typename Q<int>::X) {}
+.Ve
+.Sp
+Instantiations of these templates may be mangled incorrectly.
+.RE
+.RS 4
+.RE
+.IP "\fB\-Wctor\-dtor\-privacy\fR (\*(C+ only)" 4
+.IX Item "-Wctor-dtor-privacy ( only)"
+Warn when a class seems unusable because all the constructors or
+destructors in that class are private, and it has neither friends nor
+public static member functions.
+.IP "\fB\-Wnon\-virtual\-dtor\fR (\*(C+ only)" 4
+.IX Item "-Wnon-virtual-dtor ( only)"
+Warn when a class appears to be polymorphic, thereby requiring a virtual
+destructor, yet it declares a non-virtual one.
+This warning is enabled by \fB\-Wall\fR.
+.IP "\fB\-Wreorder\fR (\*(C+ only)" 4
+.IX Item "-Wreorder ( only)"
+Warn when the order of member initializers given in the code does not
+match the order in which they must be executed.  For instance:
+.Sp
+.Vb 5
+\&        struct A {
+\&          int i;
+\&          int j;
+\&          A(): j (0), i (1) { }
+\&        };
+.Ve
+.Sp
+The compiler will rearrange the member initializers for \fBi\fR
+and \fBj\fR to match the declaration order of the members, emitting
+a warning to that effect.  This warning is enabled by \fB\-Wall\fR.
+.PP
+The following \fB\-W...\fR options are not affected by \fB\-Wall\fR.
+.IP "\fB\-Weffc++\fR (\*(C+ only)" 4
+.IX Item "-Weffc++ ( only)"
+Warn about violations of the following style guidelines from Scott Meyers'
+\&\fIEffective \*(C+\fR book:
+.RS 4
+.IP "\(bu" 4
+Item 11:  Define a copy constructor and an assignment operator for classes
+with dynamically allocated memory.
+.IP "\(bu" 4
+Item 12:  Prefer initialization to assignment in constructors.
+.IP "\(bu" 4
+Item 14:  Make destructors virtual in base classes.
+.IP "\(bu" 4
+Item 15:  Have \f(CW\*(C`operator=\*(C'\fR return a reference to \f(CW*this\fR.
+.IP "\(bu" 4
+Item 23:  Don't try to return a reference when you must return an object.
+.RE
+.RS 4
+.Sp
+Also warn about violations of the following style guidelines from
+Scott Meyers' \fIMore Effective \*(C+\fR book:
+.IP "\(bu" 4
+Item 6:  Distinguish between prefix and postfix forms of increment and
+decrement operators.
+.IP "\(bu" 4
+Item 7:  Never overload \f(CW\*(C`&&\*(C'\fR, \f(CW\*(C`||\*(C'\fR, or \f(CW\*(C`,\*(C'\fR.
+.RE
+.RS 4
+.Sp
+When selecting this option, be aware that the standard library
+headers do not obey all of these guidelines; use \fBgrep \-v\fR
+to filter out those warnings.
+.RE
+.IP "\fB\-Wno\-deprecated\fR (\*(C+ only)" 4
+.IX Item "-Wno-deprecated ( only)"
+Do not warn about usage of deprecated features.  
+.IP "\fB\-Wno\-non\-template\-friend\fR (\*(C+ only)" 4
+.IX Item "-Wno-non-template-friend ( only)"
+Disable warnings when non-templatized friend functions are declared
+within a template.  Since the advent of explicit template specification
+support in G++, if the name of the friend is an unqualified-id (i.e.,
+\&\fBfriend foo(int)\fR), the \*(C+ language specification demands that the
+friend declare or define an ordinary, nontemplate function.  (Section
+14.5.3).  Before G++ implemented explicit specification, unqualified-ids
+could be interpreted as a particular specialization of a templatized
+function.  Because this non-conforming behavior is no longer the default
+behavior for G++, \fB\-Wnon\-template\-friend\fR allows the compiler to
+check existing code for potential trouble spots and is on by default.
+This new compiler behavior can be turned off with
+\&\fB\-Wno\-non\-template\-friend\fR which keeps the conformant compiler code
+but disables the helpful warning.
+.IP "\fB\-Wold\-style\-cast\fR (\*(C+ only)" 4
+.IX Item "-Wold-style-cast ( only)"
+Warn if an old-style (C\-style) cast to a non-void type is used within
+a \*(C+ program.  The new-style casts (\fBstatic_cast\fR,
+\&\fBreinterpret_cast\fR, and \fBconst_cast\fR) are less vulnerable to
+unintended effects and much easier to search for.
+.IP "\fB\-Woverloaded\-virtual\fR (\*(C+ only)" 4
+.IX Item "-Woverloaded-virtual ( only)"
+Warn when a function declaration hides virtual functions from a
+base class.  For example, in:
+.Sp
+.Vb 3
+\&        struct A {
+\&          virtual void f();
+\&        };
+.Ve
+.Sp
+.Vb 3
+\&        struct B: public A {
+\&          void f(int);
+\&        };
+.Ve
+.Sp
+the \f(CW\*(C`A\*(C'\fR class version of \f(CW\*(C`f\*(C'\fR is hidden in \f(CW\*(C`B\*(C'\fR, and code
+like:
+.Sp
+.Vb 2
+\&        B* b;
+\&        b->f();
+.Ve
+.Sp
+will fail to compile.
+.IP "\fB\-Wno\-pmf\-conversions\fR (\*(C+ only)" 4
+.IX Item "-Wno-pmf-conversions ( only)"
+Disable the diagnostic for converting a bound pointer to member function
+to a plain pointer.
+.IP "\fB\-Wsign\-promo\fR (\*(C+ only)" 4
+.IX Item "-Wsign-promo ( only)"
+Warn when overload resolution chooses a promotion from unsigned or
+enumerated type to a signed type, over a conversion to an unsigned type of
+the same size.  Previous versions of G++ would try to preserve
+unsignedness, but the standard mandates the current behavior.
+.IP "\fB\-Wsynth\fR (\*(C+ only)" 4
+.IX Item "-Wsynth ( only)"
+Warn when G++'s synthesis behavior does not match that of cfront.  For
+instance:
+.Sp
+.Vb 4
+\&        struct A {
+\&          operator int ();
+\&          A& operator = (int);
+\&        };
+.Ve
+.Sp
+.Vb 5
+\&        main ()
+\&        {
+\&          A a,b;
+\&          a = b;
+\&        }
+.Ve
+.Sp
+In this example, G++ will synthesize a default \fBA& operator =
+(const A&);\fR, while cfront will use the user-defined \fBoperator =\fR.
+.Sh "Options Controlling Objective-C Dialect"
+.IX Subsection "Options Controlling Objective-C Dialect"
+(\s-1NOTE:\s0 This manual does not describe the Objective-C language itself.  See
+<\fBhttp://gcc.gnu.org/readings.html\fR> for references.)
+.PP
+This section describes the command-line options that are only meaningful
+for Objective-C programs, but you can also use most of the \s-1GNU\s0 compiler
+options regardless of what language your program is in.  For example,
+you might compile a file \f(CW\*(C`some_class.m\*(C'\fR like this:
+.PP
+.Vb 1
+\&        gcc -g -fgnu-runtime -O -c some_class.m
+.Ve
+.PP
+In this example, \fB\-fgnu\-runtime\fR is an option meant only for
+Objective-C programs; you can use the other options with any language
+supported by \s-1GCC\s0.
+.PP
+Here is a list of options that are \fIonly\fR for compiling Objective-C
+programs:
+.IP "\fB\-fconstant\-string\-class=\fR\fIclass-name\fR" 4
+.IX Item "-fconstant-string-class=class-name"
+Use \fIclass-name\fR as the name of the class to instantiate for each
+literal string specified with the syntax \f(CW\*(C`@"..."\*(C'\fR.  The default
+class name is \f(CW\*(C`NXConstantString\*(C'\fR if the \s-1GNU\s0 runtime is being used, and
+\&\f(CW\*(C`NSConstantString\*(C'\fR if the NeXT runtime is being used (see below).  The
+\&\fB\-fconstant\-cfstrings\fR option, if also present, will override the
+\&\fB\-fconstant\-string\-class\fR setting and cause \f(CW\*(C`@"..."\*(C'\fR literals
+to be laid out as constant CoreFoundation strings.
+.IP "\fB\-fgnu\-runtime\fR" 4
+.IX Item "-fgnu-runtime"
+Generate object code compatible with the standard \s-1GNU\s0 Objective-C
+runtime.  This is the default for most types of systems.
+.IP "\fB\-fnext\-runtime\fR" 4
+.IX Item "-fnext-runtime"
+Generate output compatible with the NeXT runtime.  This is the default
+for NeXT-based systems, including Darwin and Mac \s-1OS\s0 X.  The macro
+\&\f(CW\*(C`_\|_NEXT_RUNTIME_\|_\*(C'\fR is predefined if (and only if) this option is
+used.
+.IP "\fB\-fno\-nil\-receivers\fR" 4
+.IX Item "-fno-nil-receivers"
+Assume that all Objective-C message dispatches (e.g.,
+\&\f(CW\*(C`[receiver message:arg]\*(C'\fR) in this translation unit ensure that the receiver
+is not \f(CW\*(C`nil\*(C'\fR.  This allows for more efficient entry points in the runtime to be
+used.  Currently, this option is only available in conjunction with
+the NeXT runtime on Mac \s-1OS\s0 X 10.3 and later.
+.IP "\fB\-fobjc\-exceptions\fR" 4
+.IX Item "-fobjc-exceptions"
+Enable syntactic support for structured exception handling in Objective\-C,
+similar to what is offered by \*(C+ and Java.  Currently, this option is only
+available in conjunction with the NeXT runtime on Mac \s-1OS\s0 X 10.3 and later.
+.Sp
+.Vb 23
+\&          @try {
+\&            ...
+\&               @throw expr;
+\&            ...
+\&          }
+\&          @catch (AnObjCClass *exc) {
+\&            ...
+\&              @throw expr;
+\&            ...
+\&              @throw;
+\&            ...
+\&          }
+\&          @catch (AnotherClass *exc) {
+\&            ...
+\&          }
+\&          @catch (id allOthers) {
+\&            ...
+\&          }
+\&          @finally {
+\&            ...
+\&              @throw expr;
+\&            ...
+\&          }
+.Ve
+.Sp
+The \f(CW@throw\fR statement may appear anywhere in an Objective-C or
+Objective\-\*(C+ program; when used inside of a \f(CW@catch\fR block, the
+\&\f(CW@throw\fR may appear without an argument (as shown above), in which case
+the object caught by the \f(CW@catch\fR will be rethrown.
+.Sp
+Note that only (pointers to) Objective-C objects may be thrown and
+caught using this scheme.  When an object is thrown, it will be caught
+by the nearest \f(CW@catch\fR clause capable of handling objects of that type,
+analogously to how \f(CW\*(C`catch\*(C'\fR blocks work in \*(C+ and Java.  A
+\&\f(CW\*(C`@catch(id ...)\*(C'\fR clause (as shown above) may also be provided to catch
+any and all Objective-C exceptions not caught by previous \f(CW@catch\fR
+clauses (if any).
+.Sp
+The \f(CW@finally\fR clause, if present, will be executed upon exit from the
+immediately preceding \f(CW\*(C`@try ... @catch\*(C'\fR section.  This will happen
+regardless of whether any exceptions are thrown, caught or rethrown
+inside the \f(CW\*(C`@try ... @catch\*(C'\fR section, analogously to the behavior
+of the \f(CW\*(C`finally\*(C'\fR clause in Java.
+.Sp
+There are several caveats to using the new exception mechanism:
+.RS 4
+.IP "\(bu" 4
+Although currently designed to be binary compatible with \f(CW\*(C`NS_HANDLER\*(C'\fR\-style
+idioms provided by the \f(CW\*(C`NSException\*(C'\fR class, the new
+exceptions can only be used on Mac \s-1OS\s0 X 10.3 (Panther) and later
+systems, due to additional functionality needed in the (NeXT) Objective-C
+runtime.
+.IP "\(bu" 4
+As mentioned above, the new exceptions do not support handling
+types other than Objective-C objects.   Furthermore, when used from
+Objective\-\*(C+, the Objective-C exception model does not interoperate with \*(C+
+exceptions at this time.  This means you cannot \f(CW@throw\fR an exception
+from Objective-C and \f(CW\*(C`catch\*(C'\fR it in \*(C+, or vice versa
+(i.e., \f(CW\*(C`throw ... @catch\*(C'\fR).
+.RE
+.RS 4
+.Sp
+The \fB\-fobjc\-exceptions\fR switch also enables the use of synchronization
+blocks for thread-safe execution:
+.Sp
+.Vb 3
+\&          @synchronized (ObjCClass *guard) {
+\&            ...
+\&          }
+.Ve
+.Sp
+Upon entering the \f(CW@synchronized\fR block, a thread of execution shall
+first check whether a lock has been placed on the corresponding \f(CW\*(C`guard\*(C'\fR
+object by another thread.  If it has, the current thread shall wait until
+the other thread relinquishes its lock.  Once \f(CW\*(C`guard\*(C'\fR becomes available,
+the current thread will place its own lock on it, execute the code contained in
+the \f(CW@synchronized\fR block, and finally relinquish the lock (thereby
+making \f(CW\*(C`guard\*(C'\fR available to other threads).
+.Sp
+Unlike Java, Objective-C does not allow for entire methods to be marked
+\&\f(CW@synchronized\fR.  Note that throwing exceptions out of
+\&\f(CW@synchronized\fR blocks is allowed, and will cause the guarding object
+to be unlocked properly.
+.RE
+.IP "\fB\-freplace\-objc\-classes\fR" 4
+.IX Item "-freplace-objc-classes"
+Emit a special marker instructing \fB\f(BIld\fB\|(1)\fR not to statically link in
+the resulting object file, and allow \fB\f(BIdyld\fB\|(1)\fR to load it in at
+run time instead.  This is used in conjunction with the Fix-and-Continue
+debugging mode, where the object file in question may be recompiled and
+dynamically reloaded in the course of program execution, without the need
+to restart the program itself.  Currently, Fix-and-Continue functionality
+is only available in conjunction with the NeXT runtime on Mac \s-1OS\s0 X 10.3
+and later.
+.IP "\fB\-fzero\-link\fR" 4
+.IX Item "-fzero-link"
+When compiling for the NeXT runtime, the compiler ordinarily replaces calls
+to \f(CW\*(C`objc_getClass("...")\*(C'\fR (when the name of the class is known at
+compile time) with static class references that get initialized at load time,
+which improves run-time performance.  Specifying the \fB\-fzero\-link\fR flag
+suppresses this behavior and causes calls to \f(CW\*(C`objc_getClass("...")\*(C'\fR
+to be retained.  This is useful in Zero-Link debugging mode, since it allows
+for individual class implementations to be modified during program execution.
+.IP "\fB\-gen\-decls\fR" 4
+.IX Item "-gen-decls"
+Dump interface declarations for all classes seen in the source file to a
+file named \fI\fIsourcename\fI.decl\fR.
+.IP "\fB\-Wno\-protocol\fR" 4
+.IX Item "-Wno-protocol"
+If a class is declared to implement a protocol, a warning is issued for
+every method in the protocol that is not implemented by the class.  The
+default behavior is to issue a warning for every method not explicitly
+implemented in the class, even if a method implementation is inherited
+from the superclass.  If you use the \f(CW\*(C`\-Wno\-protocol\*(C'\fR option, then
+methods inherited from the superclass are considered to be implemented,
+and no warning is issued for them.
+.IP "\fB\-Wselector\fR" 4
+.IX Item "-Wselector"
+Warn if multiple methods of different types for the same selector are
+found during compilation.  The check is performed on the list of methods
+in the final stage of compilation.  Additionally, a check is performed
+for each selector appearing in a \f(CW\*(C`@selector(...)\*(C'\fR
+expression, and a corresponding method for that selector has been found
+during compilation.  Because these checks scan the method table only at
+the end of compilation, these warnings are not produced if the final
+stage of compilation is not reached, for example because an error is
+found during compilation, or because the \f(CW\*(C`\-fsyntax\-only\*(C'\fR option is
+being used.
+.IP "\fB\-Wundeclared\-selector\fR" 4
+.IX Item "-Wundeclared-selector"
+Warn if a \f(CW\*(C`@selector(...)\*(C'\fR expression referring to an
+undeclared selector is found.  A selector is considered undeclared if no
+method with that name has been declared before the
+\&\f(CW\*(C`@selector(...)\*(C'\fR expression, either explicitly in an
+\&\f(CW@interface\fR or \f(CW@protocol\fR declaration, or implicitly in
+an \f(CW@implementation\fR section.  This option always performs its
+checks as soon as a \f(CW\*(C`@selector(...)\*(C'\fR expression is found,
+while \f(CW\*(C`\-Wselector\*(C'\fR only performs its checks in the final stage of
+compilation.  This also enforces the coding style convention
+that methods and selectors must be declared before being used.
+.IP "\fB\-print\-objc\-runtime\-info\fR" 4
+.IX Item "-print-objc-runtime-info"
+Generate C header describing the largest structure that is passed by
+value, if any.
+.Sh "Options to Control Diagnostic Messages Formatting"
+.IX Subsection "Options to Control Diagnostic Messages Formatting"
+Traditionally, diagnostic messages have been formatted irrespective of
+the output device's aspect (e.g. its width, ...).  The options described
+below can be used to control the diagnostic messages formatting
+algorithm, e.g. how many characters per line, how often source location
+information should be reported.  Right now, only the \*(C+ front end can
+honor these options.  However it is expected, in the near future, that
+the remaining front ends would be able to digest them correctly.
+.IP "\fB\-fmessage\-length=\fR\fIn\fR" 4
+.IX Item "-fmessage-length=n"
+Try to format error messages so that they fit on lines of about \fIn\fR
+characters.  The default is 72 characters for \fBg++\fR and 0 for the rest of
+the front ends supported by \s-1GCC\s0.  If \fIn\fR is zero, then no
+line-wrapping will be done; each error message will appear on a single
+line.
+.IP "\fB\-fdiagnostics\-show\-location=once\fR" 4
+.IX Item "-fdiagnostics-show-location=once"
+Only meaningful in line-wrapping mode.  Instructs the diagnostic messages
+reporter to emit \fIonce\fR source location information; that is, in
+case the message is too long to fit on a single physical line and has to
+be wrapped, the source location won't be emitted (as prefix) again,
+over and over, in subsequent continuation lines.  This is the default
+behavior.
+.IP "\fB\-fdiagnostics\-show\-location=every\-line\fR" 4
+.IX Item "-fdiagnostics-show-location=every-line"
+Only meaningful in line-wrapping mode.  Instructs the diagnostic
+messages reporter to emit the same source location information (as
+prefix) for physical lines that result from the process of breaking
+a message which is too long to fit on a single line.
+.Sh "Options to Request or Suppress Warnings"
+.IX Subsection "Options to Request or Suppress Warnings"
+Warnings are diagnostic messages that report constructions which
+are not inherently erroneous but which are risky or suggest there
+may have been an error.
+.PP
+You can request many specific warnings with options beginning \fB\-W\fR,
+for example \fB\-Wimplicit\fR to request warnings on implicit
+declarations.  Each of these specific warning options also has a
+negative form beginning \fB\-Wno\-\fR to turn off warnings;
+for example, \fB\-Wno\-implicit\fR.  This manual lists only one of the
+two forms, whichever is not the default.
+.PP
+The following options control the amount and kinds of warnings produced
+by \s-1GCC\s0; for further, language-specific options also refer to
+\&\fB\*(C+ Dialect Options\fR and \fBObjective-C Dialect Options\fR.
+.IP "\fB\-fsyntax\-only\fR" 4
+.IX Item "-fsyntax-only"
+Check the code for syntax errors, but don't do anything beyond that.
+.IP "\fB\-pedantic\fR" 4
+.IX Item "-pedantic"
+Issue all the warnings demanded by strict \s-1ISO\s0 C and \s-1ISO\s0 \*(C+;
+reject all programs that use forbidden extensions, and some other
+programs that do not follow \s-1ISO\s0 C and \s-1ISO\s0 \*(C+.  For \s-1ISO\s0 C, follows the
+version of the \s-1ISO\s0 C standard specified by any \fB\-std\fR option used.
+.Sp
+Valid \s-1ISO\s0 C and \s-1ISO\s0 \*(C+ programs should compile properly with or without
+this option (though a rare few will require \fB\-ansi\fR or a
+\&\fB\-std\fR option specifying the required version of \s-1ISO\s0 C).  However,
+without this option, certain \s-1GNU\s0 extensions and traditional C and \*(C+
+features are supported as well.  With this option, they are rejected.
+.Sp
+\&\fB\-pedantic\fR does not cause warning messages for use of the
+alternate keywords whose names begin and end with \fB_\|_\fR.  Pedantic
+warnings are also disabled in the expression that follows
+\&\f(CW\*(C`_\|_extension_\|_\*(C'\fR.  However, only system header files should use
+these escape routes; application programs should avoid them.
+.Sp
+Some users try to use \fB\-pedantic\fR to check programs for strict \s-1ISO\s0
+C conformance.  They soon find that it does not do quite what they want:
+it finds some non-ISO practices, but not all\-\-\-only those for which
+\&\s-1ISO\s0 C \fIrequires\fR a diagnostic, and some others for which
+diagnostics have been added.
+.Sp
+A feature to report any failure to conform to \s-1ISO\s0 C might be useful in
+some instances, but would require considerable additional work and would
+be quite different from \fB\-pedantic\fR.  We don't have plans to
+support such a feature in the near future.
+.Sp
+Where the standard specified with \fB\-std\fR represents a \s-1GNU\s0
+extended dialect of C, such as \fBgnu89\fR or \fBgnu99\fR, there is a
+corresponding \fIbase standard\fR, the version of \s-1ISO\s0 C on which the \s-1GNU\s0
+extended dialect is based.  Warnings from \fB\-pedantic\fR are given
+where they are required by the base standard.  (It would not make sense
+for such warnings to be given only for features not in the specified \s-1GNU\s0
+C dialect, since by definition the \s-1GNU\s0 dialects of C include all
+features the compiler supports with the given option, and there would be
+nothing to warn about.)
+.IP "\fB\-pedantic\-errors\fR" 4
+.IX Item "-pedantic-errors"
+Like \fB\-pedantic\fR, except that errors are produced rather than
+warnings.
+.IP "\fB\-w\fR" 4
+.IX Item "-w"
+Inhibit all warning messages.
+.IP "\fB\-Wno\-import\fR" 4
+.IX Item "-Wno-import"
+Inhibit warning messages about the use of \fB#import\fR.
+.IP "\fB\-Wchar\-subscripts\fR" 4
+.IX Item "-Wchar-subscripts"
+Warn if an array subscript has type \f(CW\*(C`char\*(C'\fR.  This is a common cause
+of error, as programmers often forget that this type is signed on some
+machines.
+.IP "\fB\-Wcomment\fR" 4
+.IX Item "-Wcomment"
+Warn whenever a comment-start sequence \fB/*\fR appears in a \fB/*\fR
+comment, or whenever a Backslash-Newline appears in a \fB//\fR comment.
+.IP "\fB\-Wformat\fR" 4
+.IX Item "-Wformat"
+Check calls to \f(CW\*(C`printf\*(C'\fR and \f(CW\*(C`scanf\*(C'\fR, etc., to make sure that
+the arguments supplied have types appropriate to the format string
+specified, and that the conversions specified in the format string make
+sense.  This includes standard functions, and others specified by format
+attributes, in the \f(CW\*(C`printf\*(C'\fR,
+\&\f(CW\*(C`scanf\*(C'\fR, \f(CW\*(C`strftime\*(C'\fR and \f(CW\*(C`strfmon\*(C'\fR (an X/Open extension,
+not in the C standard) families.
+.Sp
+The formats are checked against the format features supported by \s-1GNU\s0
+libc version 2.2.  These include all \s-1ISO\s0 C90 and C99 features, as well
+as features from the Single Unix Specification and some \s-1BSD\s0 and \s-1GNU\s0
+extensions.  Other library implementations may not support all these
+features; \s-1GCC\s0 does not support warning about features that go beyond a
+particular library's limitations.  However, if \fB\-pedantic\fR is used
+with \fB\-Wformat\fR, warnings will be given about format features not
+in the selected standard version (but not for \f(CW\*(C`strfmon\*(C'\fR formats,
+since those are not in any version of the C standard).  
+.Sp
+Since \fB\-Wformat\fR also checks for null format arguments for
+several functions, \fB\-Wformat\fR also implies \fB\-Wnonnull\fR.
+.Sp
+\&\fB\-Wformat\fR is included in \fB\-Wall\fR.  For more control over some
+aspects of format checking, the options \fB\-Wformat\-y2k\fR,
+\&\fB\-Wno\-format\-extra\-args\fR, \fB\-Wno\-format\-zero\-length\fR,
+\&\fB\-Wformat\-nonliteral\fR, \fB\-Wformat\-security\fR, and
+\&\fB\-Wformat=2\fR are available, but are not included in \fB\-Wall\fR.
+.IP "\fB\-Wformat\-y2k\fR" 4
+.IX Item "-Wformat-y2k"
+If \fB\-Wformat\fR is specified, also warn about \f(CW\*(C`strftime\*(C'\fR
+formats which may yield only a two-digit year.
+.IP "\fB\-Wno\-format\-extra\-args\fR" 4
+.IX Item "-Wno-format-extra-args"
+If \fB\-Wformat\fR is specified, do not warn about excess arguments to a
+\&\f(CW\*(C`printf\*(C'\fR or \f(CW\*(C`scanf\*(C'\fR format function.  The C standard specifies
+that such arguments are ignored.
+.Sp
+Where the unused arguments lie between used arguments that are
+specified with \fB$\fR operand number specifications, normally
+warnings are still given, since the implementation could not know what
+type to pass to \f(CW\*(C`va_arg\*(C'\fR to skip the unused arguments.  However,
+in the case of \f(CW\*(C`scanf\*(C'\fR formats, this option will suppress the
+warning if the unused arguments are all pointers, since the Single
+Unix Specification says that such unused arguments are allowed.
+.IP "\fB\-Wno\-format\-zero\-length\fR" 4
+.IX Item "-Wno-format-zero-length"
+If \fB\-Wformat\fR is specified, do not warn about zero-length formats.
+The C standard specifies that zero-length formats are allowed.
+.IP "\fB\-Wformat\-nonliteral\fR" 4
+.IX Item "-Wformat-nonliteral"
+If \fB\-Wformat\fR is specified, also warn if the format string is not a
+string literal and so cannot be checked, unless the format function
+takes its format arguments as a \f(CW\*(C`va_list\*(C'\fR.
+.IP "\fB\-Wformat\-security\fR" 4
+.IX Item "-Wformat-security"
+If \fB\-Wformat\fR is specified, also warn about uses of format
+functions that represent possible security problems.  At present, this
+warns about calls to \f(CW\*(C`printf\*(C'\fR and \f(CW\*(C`scanf\*(C'\fR functions where the
+format string is not a string literal and there are no format arguments,
+as in \f(CW\*(C`printf (foo);\*(C'\fR.  This may be a security hole if the format
+string came from untrusted input and contains \fB%n\fR.  (This is
+currently a subset of what \fB\-Wformat\-nonliteral\fR warns about, but
+in future warnings may be added to \fB\-Wformat\-security\fR that are not
+included in \fB\-Wformat\-nonliteral\fR.)
+.IP "\fB\-Wformat=2\fR" 4
+.IX Item "-Wformat=2"
+Enable \fB\-Wformat\fR plus format checks not included in
+\&\fB\-Wformat\fR.  Currently equivalent to \fB\-Wformat
+\&\-Wformat\-nonliteral \-Wformat\-security \-Wformat\-y2k\fR.
+.IP "\fB\-Wnonnull\fR" 4
+.IX Item "-Wnonnull"
+Warn about passing a null pointer for arguments marked as
+requiring a non-null value by the \f(CW\*(C`nonnull\*(C'\fR function attribute.
+.Sp
+\&\fB\-Wnonnull\fR is included in \fB\-Wall\fR and \fB\-Wformat\fR.  It
+can be disabled with the \fB\-Wno\-nonnull\fR option.
+.IP "\fB\-Winit\-self\fR (C, \*(C+, and Objective-C only)" 4
+.IX Item "-Winit-self (C, , and Objective-C only)"
+Warn about uninitialized variables which are initialized with themselves.
+Note this option can only be used with the \fB\-Wuninitialized\fR option,
+which in turn only works with \fB\-O1\fR and above.
+.Sp
+For example, \s-1GCC\s0 will warn about \f(CW\*(C`i\*(C'\fR being uninitialized in the
+following snippet only when \fB\-Winit\-self\fR has been specified:
+.Sp
+.Vb 5
+\&        int f()
+\&        {
+\&          int i = i;
+\&          return i;
+\&        }
+.Ve
+.IP "\fB\-Wimplicit\-int\fR" 4
+.IX Item "-Wimplicit-int"
+Warn when a declaration does not specify a type.
+.IP "\fB\-Wimplicit\-function\-declaration\fR" 4
+.IX Item "-Wimplicit-function-declaration"
+.PD 0
+.IP "\fB\-Werror\-implicit\-function\-declaration\fR" 4
+.IX Item "-Werror-implicit-function-declaration"
+.PD
+Give a warning (or error) whenever a function is used before being
+declared.
+.IP "\fB\-Wimplicit\fR" 4
+.IX Item "-Wimplicit"
+Same as \fB\-Wimplicit\-int\fR and \fB\-Wimplicit\-function\-declaration\fR.
+.IP "\fB\-Wmain\fR" 4
+.IX Item "-Wmain"
+Warn if the type of \fBmain\fR is suspicious.  \fBmain\fR should be a
+function with external linkage, returning int, taking either zero
+arguments, two, or three arguments of appropriate types.
+.IP "\fB\-Wmissing\-braces\fR" 4
+.IX Item "-Wmissing-braces"
+Warn if an aggregate or union initializer is not fully bracketed.  In
+the following example, the initializer for \fBa\fR is not fully
+bracketed, but that for \fBb\fR is fully bracketed.
+.Sp
+.Vb 2
+\&        int a[2][2] = { 0, 1, 2, 3 };
+\&        int b[2][2] = { { 0, 1 }, { 2, 3 } };
+.Ve
+.IP "\fB\-Wparentheses\fR" 4
+.IX Item "-Wparentheses"
+Warn if parentheses are omitted in certain contexts, such
+as when there is an assignment in a context where a truth value
+is expected, or when operators are nested whose precedence people
+often get confused about.
+.Sp
+Also warn about constructions where there may be confusion to which
+\&\f(CW\*(C`if\*(C'\fR statement an \f(CW\*(C`else\*(C'\fR branch belongs.  Here is an example of
+such a case:
+.Sp
+.Vb 7
+\&        {
+\&          if (a)
+\&            if (b)
+\&              foo ();
+\&          else
+\&            bar ();
+\&        }
+.Ve
+.Sp
+In C, every \f(CW\*(C`else\*(C'\fR branch belongs to the innermost possible \f(CW\*(C`if\*(C'\fR
+statement, which in this example is \f(CW\*(C`if (b)\*(C'\fR.  This is often not
+what the programmer expected, as illustrated in the above example by
+indentation the programmer chose.  When there is the potential for this
+confusion, \s-1GCC\s0 will issue a warning when this flag is specified.
+To eliminate the warning, add explicit braces around the innermost
+\&\f(CW\*(C`if\*(C'\fR statement so there is no way the \f(CW\*(C`else\*(C'\fR could belong to
+the enclosing \f(CW\*(C`if\*(C'\fR.  The resulting code would look like this:
+.Sp
+.Vb 9
+\&        {
+\&          if (a)
+\&            {
+\&              if (b)
+\&                foo ();
+\&              else
+\&                bar ();
+\&            }
+\&        }
+.Ve
+.IP "\fB\-Wsequence\-point\fR" 4
+.IX Item "-Wsequence-point"
+Warn about code that may have undefined semantics because of violations
+of sequence point rules in the C standard.
+.Sp
+The C standard defines the order in which expressions in a C program are
+evaluated in terms of \fIsequence points\fR, which represent a partial
+ordering between the execution of parts of the program: those executed
+before the sequence point, and those executed after it.  These occur
+after the evaluation of a full expression (one which is not part of a
+larger expression), after the evaluation of the first operand of a
+\&\f(CW\*(C`&&\*(C'\fR, \f(CW\*(C`||\*(C'\fR, \f(CW\*(C`? :\*(C'\fR or \f(CW\*(C`,\*(C'\fR (comma) operator, before a
+function is called (but after the evaluation of its arguments and the
+expression denoting the called function), and in certain other places.
+Other than as expressed by the sequence point rules, the order of
+evaluation of subexpressions of an expression is not specified.  All
+these rules describe only a partial order rather than a total order,
+since, for example, if two functions are called within one expression
+with no sequence point between them, the order in which the functions
+are called is not specified.  However, the standards committee have
+ruled that function calls do not overlap.
+.Sp
+It is not specified when between sequence points modifications to the
+values of objects take effect.  Programs whose behavior depends on this
+have undefined behavior; the C standard specifies that ``Between the
+previous and next sequence point an object shall have its stored value
+modified at most once by the evaluation of an expression.  Furthermore,
+the prior value shall be read only to determine the value to be
+stored.''.  If a program breaks these rules, the results on any
+particular implementation are entirely unpredictable.
+.Sp
+Examples of code with undefined behavior are \f(CW\*(C`a = a++;\*(C'\fR, \f(CW\*(C`a[n]
+= b[n++]\*(C'\fR and \f(CW\*(C`a[i++] = i;\*(C'\fR.  Some more complicated cases are not
+diagnosed by this option, and it may give an occasional false positive
+result, but in general it has been found fairly effective at detecting
+this sort of problem in programs.
+.Sp
+The present implementation of this option only works for C programs.  A
+future implementation may also work for \*(C+ programs.
+.Sp
+The C standard is worded confusingly, therefore there is some debate
+over the precise meaning of the sequence point rules in subtle cases.
+Links to discussions of the problem, including proposed formal
+definitions, may be found on the \s-1GCC\s0 readings page, at
+<\fBhttp://gcc.gnu.org/readings.html\fR>.
+.IP "\fB\-Wreturn\-type\fR" 4
+.IX Item "-Wreturn-type"
+Warn whenever a function is defined with a return-type that defaults to
+\&\f(CW\*(C`int\*(C'\fR.  Also warn about any \f(CW\*(C`return\*(C'\fR statement with no
+return-value in a function whose return-type is not \f(CW\*(C`void\*(C'\fR.
+.Sp
+For \*(C+, a function without return type always produces a diagnostic
+message, even when \fB\-Wno\-return\-type\fR is specified.  The only
+exceptions are \fBmain\fR and functions defined in system headers.
+.IP "\fB\-Wswitch\fR" 4
+.IX Item "-Wswitch"
+Warn whenever a \f(CW\*(C`switch\*(C'\fR statement has an index of enumerated type
+and lacks a \f(CW\*(C`case\*(C'\fR for one or more of the named codes of that
+enumeration.  (The presence of a \f(CW\*(C`default\*(C'\fR label prevents this
+warning.)  \f(CW\*(C`case\*(C'\fR labels outside the enumeration range also
+provoke warnings when this option is used.
+.IP "\fB\-Wswitch\-default\fR" 4
+.IX Item "-Wswitch-default"
+Warn whenever a \f(CW\*(C`switch\*(C'\fR statement does not have a \f(CW\*(C`default\*(C'\fR
+case.
+.IP "\fB\-Wswitch\-enum\fR" 4
+.IX Item "-Wswitch-enum"
+Warn whenever a \f(CW\*(C`switch\*(C'\fR statement has an index of enumerated type
+and lacks a \f(CW\*(C`case\*(C'\fR for one or more of the named codes of that
+enumeration.  \f(CW\*(C`case\*(C'\fR labels outside the enumeration range also
+provoke warnings when this option is used.
+.IP "\fB\-Wtrigraphs\fR" 4
+.IX Item "-Wtrigraphs"
+Warn if any trigraphs are encountered that might change the meaning of
+the program (trigraphs within comments are not warned about).
+.IP "\fB\-Wunused\-function\fR" 4
+.IX Item "-Wunused-function"
+Warn whenever a static function is declared but not defined or a
+non\e\-inline static function is unused.
+.IP "\fB\-Wunused\-label\fR" 4
+.IX Item "-Wunused-label"
+Warn whenever a label is declared but not used.
+.Sp
+To suppress this warning use the \fBunused\fR attribute.
+.IP "\fB\-Wunused\-parameter\fR" 4
+.IX Item "-Wunused-parameter"
+Warn whenever a function parameter is unused aside from its declaration.
+.Sp
+To suppress this warning use the \fBunused\fR attribute.
+.IP "\fB\-Wunused\-variable\fR" 4
+.IX Item "-Wunused-variable"
+Warn whenever a local variable or non-constant static variable is unused
+aside from its declaration
+.Sp
+To suppress this warning use the \fBunused\fR attribute.
+.IP "\fB\-Wunused\-value\fR" 4
+.IX Item "-Wunused-value"
+Warn whenever a statement computes a result that is explicitly not used.
+.Sp
+To suppress this warning cast the expression to \fBvoid\fR.
+.IP "\fB\-Wunused\fR" 4
+.IX Item "-Wunused"
+All the above \fB\-Wunused\fR options combined.
+.Sp
+In order to get a warning about an unused function parameter, you must
+either specify \fB\-Wextra \-Wunused\fR (note that \fB\-Wall\fR implies
+\&\fB\-Wunused\fR), or separately specify \fB\-Wunused\-parameter\fR.
+.IP "\fB\-Wuninitialized\fR" 4
+.IX Item "-Wuninitialized"
+Warn if an automatic variable is used without first being initialized or
+if a variable may be clobbered by a \f(CW\*(C`setjmp\*(C'\fR call.
+.Sp
+These warnings are possible only in optimizing compilation,
+because they require data flow information that is computed only
+when optimizing.  If you don't specify \fB\-O\fR, you simply won't
+get these warnings.
+.Sp
+If you want to warn about code which uses the uninitialized value of the
+variable in its own initializer, use the \fB\-Winit\-self\fR option.
+.Sp
+These warnings occur only for variables that are candidates for
+register allocation.  Therefore, they do not occur for a variable that
+is declared \f(CW\*(C`volatile\*(C'\fR, or whose address is taken, or whose size
+is other than 1, 2, 4 or 8 bytes.  Also, they do not occur for
+structures, unions or arrays, even when they are in registers.
+.Sp
+Note that there may be no warning about a variable that is used only
+to compute a value that itself is never used, because such
+computations may be deleted by data flow analysis before the warnings
+are printed.
+.Sp
+These warnings are made optional because \s-1GCC\s0 is not smart
+enough to see all the reasons why the code might be correct
+despite appearing to have an error.  Here is one example of how
+this can happen:
+.Sp
+.Vb 12
+\&        {
+\&          int x;
+\&          switch (y)
+\&            {
+\&            case 1: x = 1;
+\&              break;
+\&            case 2: x = 4;
+\&              break;
+\&            case 3: x = 5;
+\&            }
+\&          foo (x);
+\&        }
+.Ve
+.Sp
+If the value of \f(CW\*(C`y\*(C'\fR is always 1, 2 or 3, then \f(CW\*(C`x\*(C'\fR is
+always initialized, but \s-1GCC\s0 doesn't know this.  Here is
+another common case:
+.Sp
+.Vb 6
+\&        {
+\&          int save_y;
+\&          if (change_y) save_y = y, y = new_y;
+\&          ...
+\&          if (change_y) y = save_y;
+\&        }
+.Ve
+.Sp
+This has no bug because \f(CW\*(C`save_y\*(C'\fR is used only if it is set.
+.Sp
+This option also warns when a non-volatile automatic variable might be
+changed by a call to \f(CW\*(C`longjmp\*(C'\fR.  These warnings as well are possible
+only in optimizing compilation.
+.Sp
+The compiler sees only the calls to \f(CW\*(C`setjmp\*(C'\fR.  It cannot know
+where \f(CW\*(C`longjmp\*(C'\fR will be called; in fact, a signal handler could
+call it at any point in the code.  As a result, you may get a warning
+even when there is in fact no problem because \f(CW\*(C`longjmp\*(C'\fR cannot
+in fact be called at the place which would cause a problem.
+.Sp
+Some spurious warnings can be avoided if you declare all the functions
+you use that never return as \f(CW\*(C`noreturn\*(C'\fR.  
+.IP "\fB\-Wunknown\-pragmas\fR" 4
+.IX Item "-Wunknown-pragmas"
+Warn when a #pragma directive is encountered which is not understood by
+\&\s-1GCC\s0.  If this command line option is used, warnings will even be issued
+for unknown pragmas in system header files.  This is not the case if
+the warnings were only enabled by the \fB\-Wall\fR command line option.
+.IP "\fB\-Wstrict\-aliasing\fR" 4
+.IX Item "-Wstrict-aliasing"
+This option is only active when \fB\-fstrict\-aliasing\fR is active.
+It warns about code which might break the strict aliasing rules that the
+compiler is using for optimization. The warning does not catch all
+cases, but does attempt to catch the more common pitfalls. It is
+included in \fB\-Wall\fR.
+.IP "\fB\-Wall\fR" 4
+.IX Item "-Wall"
+All of the above \fB\-W\fR options combined.  This enables all the
+warnings about constructions that some users consider questionable, and
+that are easy to avoid (or modify to prevent the warning), even in
+conjunction with macros.  This also enables some language-specific
+warnings described in \fB\*(C+ Dialect Options\fR and
+\&\fBObjective-C Dialect Options\fR.
+.PP
+The following \fB\-W...\fR options are not implied by \fB\-Wall\fR.
+Some of them warn about constructions that users generally do not
+consider questionable, but which occasionally you might wish to check
+for; others warn about constructions that are necessary or hard to avoid
+in some cases, and there is no simple way to modify the code to suppress
+the warning.
+.IP "\fB\-Wextra\fR" 4
+.IX Item "-Wextra"
+(This option used to be called \fB\-W\fR.  The older name is still
+supported, but the newer name is more descriptive.)  Print extra warning
+messages for these events:
+.RS 4
+.IP "\(bu" 4
+A function can return either with or without a value.  (Falling
+off the end of the function body is considered returning without
+a value.)  For example, this function would evoke such a
+warning:
+.Sp
+.Vb 5
+\&        foo (a)
+\&        {
+\&          if (a > 0)
+\&            return a;
+\&        }
+.Ve
+.IP "\(bu" 4
+An expression-statement or the left-hand side of a comma expression
+contains no side effects.
+To suppress the warning, cast the unused expression to void.
+For example, an expression such as \fBx[i,j]\fR will cause a warning,
+but \fBx[(void)i,j]\fR will not.
+.IP "\(bu" 4
+An unsigned value is compared against zero with \fB<\fR or \fB>=\fR.
+.IP "\(bu" 4
+A comparison like \fBx<=y<=z\fR appears; this is equivalent to
+\&\fB(x<=y ? 1 : 0) <= z\fR, which is a different interpretation from
+that of ordinary mathematical notation.
+.IP "\(bu" 4
+Storage-class specifiers like \f(CW\*(C`static\*(C'\fR are not the first things in
+a declaration.  According to the C Standard, this usage is obsolescent.
+.IP "\(bu" 4
+The return type of a function has a type qualifier such as \f(CW\*(C`const\*(C'\fR.
+Such a type qualifier has no effect, since the value returned by a
+function is not an lvalue.  (But don't warn about the \s-1GNU\s0 extension of
+\&\f(CW\*(C`volatile void\*(C'\fR return types.  That extension will be warned about
+if \fB\-pedantic\fR is specified.)
+.IP "\(bu" 4
+If \fB\-Wall\fR or \fB\-Wunused\fR is also specified, warn about unused
+arguments.
+.IP "\(bu" 4
+A comparison between signed and unsigned values could produce an
+incorrect result when the signed value is converted to unsigned.
+(But don't warn if \fB\-Wno\-sign\-compare\fR is also specified.)
+.IP "\(bu" 4
+An aggregate has an initializer which does not initialize all members.
+For example, the following code would cause such a warning, because
+\&\f(CW\*(C`x.h\*(C'\fR would be implicitly initialized to zero:
+.Sp
+.Vb 2
+\&        struct s { int f, g, h; };
+\&        struct s x = { 3, 4 };
+.Ve
+.IP "\(bu" 4
+A function parameter is declared without a type specifier in K&R\-style
+functions:
+.Sp
+.Vb 1
+\&        void foo(bar) { }
+.Ve
+.IP "\(bu" 4
+An empty body occurs in an \fBif\fR or \fBelse\fR statement.
+.IP "\(bu" 4
+A pointer is compared against integer zero with \fB<\fR, \fB<=\fR,
+\&\fB>\fR, or \fB>=\fR.
+.IP "\(bu" 4
+A variable might be changed by \fBlongjmp\fR or \fBvfork\fR.
+.IP "\(bu" 4
+Any of several floating-point events that often indicate errors, such as
+overflow, underflow, loss of precision, etc.
+.IP "*<(\*(C+ only)>" 4
+.IX Item "*<( only)>"
+An enumerator and a non-enumerator both appear in a conditional expression.
+.IP "*<(\*(C+ only)>" 4
+.IX Item "*<( only)>"
+A non-static reference or non-static \fBconst\fR member appears in a
+class without constructors.
+.IP "*<(\*(C+ only)>" 4
+.IX Item "*<( only)>"
+Ambiguous virtual bases.
+.IP "*<(\*(C+ only)>" 4
+.IX Item "*<( only)>"
+Subscripting an array which has been declared \fBregister\fR.
+.IP "*<(\*(C+ only)>" 4
+.IX Item "*<( only)>"
+Taking the address of a variable which has been declared \fBregister\fR.
+.IP "*<(\*(C+ only)>" 4
+.IX Item "*<( only)>"
+A base class is not initialized in a derived class' copy constructor.
+.RE
+.RS 4
+.RE
+.IP "\fB\-Wno\-div\-by\-zero\fR" 4
+.IX Item "-Wno-div-by-zero"
+Do not warn about compile-time integer division by zero.  Floating point
+division by zero is not warned about, as it can be a legitimate way of
+obtaining infinities and NaNs.
+.IP "\fB\-Wsystem\-headers\fR" 4
+.IX Item "-Wsystem-headers"
+Print warning messages for constructs found in system header files.
+Warnings from system headers are normally suppressed, on the assumption
+that they usually do not indicate real problems and would only make the
+compiler output harder to read.  Using this command line option tells
+\&\s-1GCC\s0 to emit warnings from system headers as if they occurred in user
+code.  However, note that using \fB\-Wall\fR in conjunction with this
+option will \fInot\fR warn about unknown pragmas in system
+headers\-\-\-for that, \fB\-Wunknown\-pragmas\fR must also be used.
+.IP "\fB\-Wfloat\-equal\fR" 4
+.IX Item "-Wfloat-equal"
+Warn if floating point values are used in equality comparisons.
+.Sp
+The idea behind this is that sometimes it is convenient (for the
+programmer) to consider floating-point values as approximations to
+infinitely precise real numbers.  If you are doing this, then you need
+to compute (by analyzing the code, or in some other way) the maximum or
+likely maximum error that the computation introduces, and allow for it
+when performing comparisons (and when producing output, but that's a
+different problem).  In particular, instead of testing for equality, you
+would check to see whether the two values have ranges that overlap; and
+this is done with the relational operators, so equality comparisons are
+probably mistaken.
+.IP "\fB\-Wtraditional\fR (C only)" 4
+.IX Item "-Wtraditional (C only)"
+Warn about certain constructs that behave differently in traditional and
+\&\s-1ISO\s0 C.  Also warn about \s-1ISO\s0 C constructs that have no traditional C
+equivalent, and/or problematic constructs which should be avoided.
+.RS 4
+.IP "\(bu" 4
+Macro parameters that appear within string literals in the macro body.
+In traditional C macro replacement takes place within string literals,
+but does not in \s-1ISO\s0 C.
+.IP "\(bu" 4
+In traditional C, some preprocessor directives did not exist.
+Traditional preprocessors would only consider a line to be a directive
+if the \fB#\fR appeared in column 1 on the line.  Therefore
+\&\fB\-Wtraditional\fR warns about directives that traditional C
+understands but would ignore because the \fB#\fR does not appear as the
+first character on the line.  It also suggests you hide directives like
+\&\fB#pragma\fR not understood by traditional C by indenting them.  Some
+traditional implementations would not recognize \fB#elif\fR, so it
+suggests avoiding it altogether.
+.IP "\(bu" 4
+A function-like macro that appears without arguments.
+.IP "\(bu" 4
+The unary plus operator.
+.IP "\(bu" 4
+The \fBU\fR integer constant suffix, or the \fBF\fR or \fBL\fR floating point
+constant suffixes.  (Traditional C does support the \fBL\fR suffix on integer
+constants.)  Note, these suffixes appear in macros defined in the system
+headers of most modern systems, e.g. the \fB_MIN\fR/\fB_MAX\fR macros in \f(CW\*(C`<limits.h>\*(C'\fR.
+Use of these macros in user code might normally lead to spurious
+warnings, however \s-1GCC\s0's integrated preprocessor has enough context to
+avoid warning in these cases.
+.IP "\(bu" 4
+A function declared external in one block and then used after the end of
+the block.
+.IP "\(bu" 4
+A \f(CW\*(C`switch\*(C'\fR statement has an operand of type \f(CW\*(C`long\*(C'\fR.
+.IP "\(bu" 4
+A non\-\f(CW\*(C`static\*(C'\fR function declaration follows a \f(CW\*(C`static\*(C'\fR one.
+This construct is not accepted by some traditional C compilers.
+.IP "\(bu" 4
+The \s-1ISO\s0 type of an integer constant has a different width or
+signedness from its traditional type.  This warning is only issued if
+the base of the constant is ten.  I.e. hexadecimal or octal values, which
+typically represent bit patterns, are not warned about.
+.IP "\(bu" 4
+Usage of \s-1ISO\s0 string concatenation is detected.
+.IP "\(bu" 4
+Initialization of automatic aggregates.
+.IP "\(bu" 4
+Identifier conflicts with labels.  Traditional C lacks a separate
+namespace for labels.
+.IP "\(bu" 4
+Initialization of unions.  If the initializer is zero, the warning is
+omitted.  This is done under the assumption that the zero initializer in
+user code appears conditioned on e.g. \f(CW\*(C`_\|_STDC_\|_\*(C'\fR to avoid missing
+initializer warnings and relies on default initialization to zero in the
+traditional C case.
+.IP "\(bu" 4
+Conversions by prototypes between fixed/floating point values and vice
+versa.  The absence of these prototypes when compiling with traditional
+C would cause serious problems.  This is a subset of the possible
+conversion warnings, for the full set use \fB\-Wconversion\fR.
+.IP "\(bu" 4
+Use of \s-1ISO\s0 C style function definitions.  This warning intentionally is
+\&\fInot\fR issued for prototype declarations or variadic functions
+because these \s-1ISO\s0 C features will appear in your code when using
+libiberty's traditional C compatibility macros, \f(CW\*(C`PARAMS\*(C'\fR and
+\&\f(CW\*(C`VPARAMS\*(C'\fR.  This warning is also bypassed for nested functions
+because that feature is already a \s-1GCC\s0 extension and thus not relevant to
+traditional C compatibility.
+.RE
+.RS 4
+.RE
+.IP "\fB\-Wdeclaration\-after\-statement\fR (C only)" 4
+.IX Item "-Wdeclaration-after-statement (C only)"
+Warn when a declaration is found after a statement in a block.  This
+construct, known from \*(C+, was introduced with \s-1ISO\s0 C99 and is by default
+allowed in \s-1GCC\s0.  It is not supported by \s-1ISO\s0 C90 and was not supported by
+\&\s-1GCC\s0 versions before \s-1GCC\s0 3.0.  
+.IP "\fB\-Wundef\fR" 4
+.IX Item "-Wundef"
+Warn if an undefined identifier is evaluated in an \fB#if\fR directive.
+.IP "\fB\-Wendif\-labels\fR" 4
+.IX Item "-Wendif-labels"
+Warn whenever an \fB#else\fR or an \fB#endif\fR are followed by text.
+.IP "\fB\-Wshadow\fR" 4
+.IX Item "-Wshadow"
+Warn whenever a local variable shadows another local variable, parameter or
+global variable or whenever a built-in function is shadowed.
+.IP "\fB\-Wlarger\-than\-\fR\fIlen\fR" 4
+.IX Item "-Wlarger-than-len"
+Warn whenever an object of larger than \fIlen\fR bytes is defined.
+.IP "\fB\-Wpointer\-arith\fR" 4
+.IX Item "-Wpointer-arith"
+Warn about anything that depends on the ``size of'' a function type or
+of \f(CW\*(C`void\*(C'\fR.  \s-1GNU\s0 C assigns these types a size of 1, for
+convenience in calculations with \f(CW\*(C`void *\*(C'\fR pointers and pointers
+to functions.
+.IP "\fB\-Wbad\-function\-cast\fR (C only)" 4
+.IX Item "-Wbad-function-cast (C only)"
+Warn whenever a function call is cast to a non-matching type.
+For example, warn if \f(CW\*(C`int malloc()\*(C'\fR is cast to \f(CW\*(C`anything *\*(C'\fR.
+.IP "\fB\-Wcast\-qual\fR" 4
+.IX Item "-Wcast-qual"
+Warn whenever a pointer is cast so as to remove a type qualifier from
+the target type.  For example, warn if a \f(CW\*(C`const char *\*(C'\fR is cast
+to an ordinary \f(CW\*(C`char *\*(C'\fR.
+.IP "\fB\-Wcast\-align\fR" 4
+.IX Item "-Wcast-align"
+Warn whenever a pointer is cast such that the required alignment of the
+target is increased.  For example, warn if a \f(CW\*(C`char *\*(C'\fR is cast to
+an \f(CW\*(C`int *\*(C'\fR on machines where integers can only be accessed at
+two\- or four-byte boundaries.
+.IP "\fB\-Wwrite\-strings\fR" 4
+.IX Item "-Wwrite-strings"
+When compiling C, give string constants the type \f(CW\*(C`const
+char[\f(CIlength\f(CW]\*(C'\fR so that
+copying the address of one into a non\-\f(CW\*(C`const\*(C'\fR \f(CW\*(C`char *\*(C'\fR
+pointer will get a warning; when compiling \*(C+, warn about the
+deprecated conversion from string constants to \f(CW\*(C`char *\*(C'\fR.
+These warnings will help you find at
+compile time code that can try to write into a string constant, but
+only if you have been very careful about using \f(CW\*(C`const\*(C'\fR in
+declarations and prototypes.  Otherwise, it will just be a nuisance;
+this is why we did not make \fB\-Wall\fR request these warnings.
+.IP "\fB\-Wconversion\fR" 4
+.IX Item "-Wconversion"
+Warn if a prototype causes a type conversion that is different from what
+would happen to the same argument in the absence of a prototype.  This
+includes conversions of fixed point to floating and vice versa, and
+conversions changing the width or signedness of a fixed point argument
+except when the same as the default promotion.
+.Sp
+Also, warn if a negative integer constant expression is implicitly
+converted to an unsigned type.  For example, warn about the assignment
+\&\f(CW\*(C`x = \-1\*(C'\fR if \f(CW\*(C`x\*(C'\fR is unsigned.  But do not warn about explicit
+casts like \f(CW\*(C`(unsigned) \-1\*(C'\fR.
+.IP "\fB\-Wsign\-compare\fR" 4
+.IX Item "-Wsign-compare"
+Warn when a comparison between signed and unsigned values could produce
+an incorrect result when the signed value is converted to unsigned.
+This warning is also enabled by \fB\-Wextra\fR; to get the other warnings
+of \fB\-Wextra\fR without this warning, use \fB\-Wextra \-Wno\-sign\-compare\fR.
+.IP "\fB\-Waggregate\-return\fR" 4
+.IX Item "-Waggregate-return"
+Warn if any functions that return structures or unions are defined or
+called.  (In languages where you can return an array, this also elicits
+a warning.)
+.IP "\fB\-Wstrict\-prototypes\fR (C only)" 4
+.IX Item "-Wstrict-prototypes (C only)"
+Warn if a function is declared or defined without specifying the
+argument types.  (An old-style function definition is permitted without
+a warning if preceded by a declaration which specifies the argument
+types.)
+.IP "\fB\-Wold\-style\-definition\fR (C only)" 4
+.IX Item "-Wold-style-definition (C only)"
+Warn if an old-style function definition is used.  A warning is given
+even if there is a previous prototype.
+.IP "\fB\-Wmissing\-prototypes\fR (C only)" 4
+.IX Item "-Wmissing-prototypes (C only)"
+Warn if a global function is defined without a previous prototype
+declaration.  This warning is issued even if the definition itself
+provides a prototype.  The aim is to detect global functions that fail
+to be declared in header files.
+.IP "\fB\-Wmissing\-declarations\fR (C only)" 4
+.IX Item "-Wmissing-declarations (C only)"
+Warn if a global function is defined without a previous declaration.
+Do so even if the definition itself provides a prototype.
+Use this option to detect global functions that are not declared in
+header files.
+.IP "\fB\-Wmissing\-noreturn\fR" 4
+.IX Item "-Wmissing-noreturn"
+Warn about functions which might be candidates for attribute \f(CW\*(C`noreturn\*(C'\fR.
+Note these are only possible candidates, not absolute ones.  Care should
+be taken to manually verify functions actually do not ever return before
+adding the \f(CW\*(C`noreturn\*(C'\fR attribute, otherwise subtle code generation
+bugs could be introduced.  You will not get a warning for \f(CW\*(C`main\*(C'\fR in
+hosted C environments.
+.IP "\fB\-Wmissing\-format\-attribute\fR" 4
+.IX Item "-Wmissing-format-attribute"
+If \fB\-Wformat\fR is enabled, also warn about functions which might be
+candidates for \f(CW\*(C`format\*(C'\fR attributes.  Note these are only possible
+candidates, not absolute ones.  \s-1GCC\s0 will guess that \f(CW\*(C`format\*(C'\fR
+attributes might be appropriate for any function that calls a function
+like \f(CW\*(C`vprintf\*(C'\fR or \f(CW\*(C`vscanf\*(C'\fR, but this might not always be the
+case, and some functions for which \f(CW\*(C`format\*(C'\fR attributes are
+appropriate may not be detected.  This option has no effect unless
+\&\fB\-Wformat\fR is enabled (possibly by \fB\-Wall\fR).
+.IP "\fB\-Wno\-multichar\fR" 4
+.IX Item "-Wno-multichar"
+Do not warn if a multicharacter constant (\fB'\s-1FOOF\s0'\fR) is used.
+Usually they indicate a typo in the user's code, as they have
+implementation-defined values, and should not be used in portable code.
+.IP "\fB\-Wno\-deprecated\-declarations\fR" 4
+.IX Item "-Wno-deprecated-declarations"
+Do not warn about uses of functions, variables, and types marked as
+deprecated by using the \f(CW\*(C`deprecated\*(C'\fR attribute.
+(@pxref{Function Attributes}, \f(CW@pxref\fR{Variable Attributes},
+\&\f(CW@pxref\fR{Type Attributes}.)
+.IP "\fB\-Wpacked\fR" 4
+.IX Item "-Wpacked"
+Warn if a structure is given the packed attribute, but the packed
+attribute has no effect on the layout or size of the structure.
+Such structures may be mis-aligned for little benefit.  For
+instance, in this code, the variable \f(CW\*(C`f.x\*(C'\fR in \f(CW\*(C`struct bar\*(C'\fR
+will be misaligned even though \f(CW\*(C`struct bar\*(C'\fR does not itself
+have the packed attribute:
+.Sp
+.Vb 8
+\&        struct foo {
+\&          int x;
+\&          char a, b, c, d;
+\&        } __attribute__((packed));
+\&        struct bar {
+\&          char z;
+\&          struct foo f;
+\&        };
+.Ve
+.IP "\fB\-Wpadded\fR" 4
+.IX Item "-Wpadded"
+Warn if padding is included in a structure, either to align an element
+of the structure or to align the whole structure.  Sometimes when this
+happens it is possible to rearrange the fields of the structure to
+reduce the padding and so make the structure smaller.
+.IP "\fB\-Wredundant\-decls\fR" 4
+.IX Item "-Wredundant-decls"
+Warn if anything is declared more than once in the same scope, even in
+cases where multiple declaration is valid and changes nothing.
+.IP "\fB\-Wnested\-externs\fR (C only)" 4
+.IX Item "-Wnested-externs (C only)"
+Warn if an \f(CW\*(C`extern\*(C'\fR declaration is encountered within a function.
+.IP "\fB\-Wunreachable\-code\fR" 4
+.IX Item "-Wunreachable-code"
+Warn if the compiler detects that code will never be executed.
+.Sp
+This option is intended to warn when the compiler detects that at
+least a whole line of source code will never be executed, because
+some condition is never satisfied or because it is after a
+procedure that never returns.
+.Sp
+It is possible for this option to produce a warning even though there
+are circumstances under which part of the affected line can be executed,
+so care should be taken when removing apparently-unreachable code.
+.Sp
+For instance, when a function is inlined, a warning may mean that the
+line is unreachable in only one inlined copy of the function.
+.Sp
+This option is not made part of \fB\-Wall\fR because in a debugging
+version of a program there is often substantial code which checks
+correct functioning of the program and is, hopefully, unreachable
+because the program does work.  Another common use of unreachable
+code is to provide behavior which is selectable at compile\-time.
+.IP "\fB\-Winline\fR" 4
+.IX Item "-Winline"
+Warn if a function can not be inlined and it was declared as inline.
+Even with this option, the compiler will not warn about failures to
+inline functions declared in system headers.
+.Sp
+The compiler uses a variety of heuristics to determine whether or not
+to inline a function.  For example, the compiler takes into account
+the size of the function being inlined and the the amount of inlining
+that has already been done in the current function.  Therefore,
+seemingly insignificant changes in the source program can cause the
+warnings produced by \fB\-Winline\fR to appear or disappear.
+.IP "\fB\-Wno\-invalid\-offsetof\fR (\*(C+ only)" 4
+.IX Item "-Wno-invalid-offsetof ( only)"
+Suppress warnings from applying the \fBoffsetof\fR macro to a non-POD
+type.  According to the 1998 \s-1ISO\s0 \*(C+ standard, applying \fBoffsetof\fR
+to a non-POD type is undefined.  In existing \*(C+ implementations,
+however, \fBoffsetof\fR typically gives meaningful results even when
+applied to certain kinds of non-POD types. (Such as a simple
+\&\fBstruct\fR that fails to be a \s-1POD\s0 type only by virtue of having a
+constructor.)  This flag is for users who are aware that they are
+writing nonportable code and who have deliberately chosen to ignore the
+warning about it.
+.Sp
+The restrictions on \fBoffsetof\fR may be relaxed in a future version
+of the \*(C+ standard.
+.IP "\fB\-Winvalid\-pch\fR" 4
+.IX Item "-Winvalid-pch"
+Warn if a precompiled header is found in
+the search path but can't be used.
+.IP "\fB\-Wlong\-long\fR" 4
+.IX Item "-Wlong-long"
+Warn if \fBlong long\fR type is used.  This is default.  To inhibit
+the warning messages, use \fB\-Wno\-long\-long\fR.  Flags
+\&\fB\-Wlong\-long\fR and \fB\-Wno\-long\-long\fR are taken into account
+only when \fB\-pedantic\fR flag is used.
+.IP "\fB\-Wdisabled\-optimization\fR" 4
+.IX Item "-Wdisabled-optimization"
+Warn if a requested optimization pass is disabled.  This warning does
+not generally indicate that there is anything wrong with your code; it
+merely indicates that \s-1GCC\s0's optimizers were unable to handle the code
+effectively.  Often, the problem is that your code is too big or too
+complex; \s-1GCC\s0 will refuse to optimize programs when the optimization
+itself is likely to take inordinate amounts of time.
+.IP "\fB\-Werror\fR" 4
+.IX Item "-Werror"
+Make all warnings into errors.
+.Sh "Options for Debugging Your Program or \s-1GCC\s0"
+.IX Subsection "Options for Debugging Your Program or GCC"
+\&\s-1GCC\s0 has various special options that are used for debugging
+either your program or \s-1GCC:\s0
+.IP "\fB\-g\fR" 4
+.IX Item "-g"
+Produce debugging information in the operating system's native format
+(stabs, \s-1COFF\s0, \s-1XCOFF\s0, or \s-1DWARF\s0).  \s-1GDB\s0 can work with this debugging
+information.
+.Sp
+On most systems that use stabs format, \fB\-g\fR enables use of extra
+debugging information that only \s-1GDB\s0 can use; this extra information
+makes debugging work better in \s-1GDB\s0 but will probably make other debuggers
+crash or
+refuse to read the program.  If you want to control for certain whether
+to generate the extra information, use \fB\-gstabs+\fR, \fB\-gstabs\fR,
+\&\fB\-gxcoff+\fR, \fB\-gxcoff\fR, or \fB\-gvms\fR (see below).
+.Sp
+Unlike most other C compilers, \s-1GCC\s0 allows you to use \fB\-g\fR with
+\&\fB\-O\fR.  The shortcuts taken by optimized code may occasionally
+produce surprising results: some variables you declared may not exist
+at all; flow of control may briefly move where you did not expect it;
+some statements may not be executed because they compute constant
+results or their values were already at hand; some statements may
+execute in different places because they were moved out of loops.
+.Sp
+Nevertheless it proves possible to debug optimized output.  This makes
+it reasonable to use the optimizer for programs that might have bugs.
+.Sp
+The following options are useful when \s-1GCC\s0 is generated with the
+capability for more than one debugging format.
+.IP "\fB\-ggdb\fR" 4
+.IX Item "-ggdb"
+Produce debugging information for use by \s-1GDB\s0.  This means to use the
+most expressive format available (\s-1DWARF\s0 2, stabs, or the native format
+if neither of those are supported), including \s-1GDB\s0 extensions if at all
+possible.
+.IP "\fB\-gstabs\fR" 4
+.IX Item "-gstabs"
+Produce debugging information in stabs format (if that is supported),
+without \s-1GDB\s0 extensions.  This is the format used by \s-1DBX\s0 on most \s-1BSD\s0
+systems.  On \s-1MIPS\s0, Alpha and System V Release 4 systems this option
+produces stabs debugging output which is not understood by \s-1DBX\s0 or \s-1SDB\s0.
+On System V Release 4 systems this option requires the \s-1GNU\s0 assembler.
+.IP "\fB\-feliminate\-unused\-debug\-symbols\fR" 4
+.IX Item "-feliminate-unused-debug-symbols"
+Produce debugging information in stabs format (if that is supported),
+for only symbols that are actually used.
+.IP "\fB\-gstabs+\fR" 4
+.IX Item "-gstabs+"
+Produce debugging information in stabs format (if that is supported),
+using \s-1GNU\s0 extensions understood only by the \s-1GNU\s0 debugger (\s-1GDB\s0).  The
+use of these extensions is likely to make other debuggers crash or
+refuse to read the program.
+.IP "\fB\-gcoff\fR" 4
+.IX Item "-gcoff"
+Produce debugging information in \s-1COFF\s0 format (if that is supported).
+This is the format used by \s-1SDB\s0 on most System V systems prior to
+System V Release 4.
+.IP "\fB\-gxcoff\fR" 4
+.IX Item "-gxcoff"
+Produce debugging information in \s-1XCOFF\s0 format (if that is supported).
+This is the format used by the \s-1DBX\s0 debugger on \s-1IBM\s0 \s-1RS/6000\s0 systems.
+.IP "\fB\-gxcoff+\fR" 4
+.IX Item "-gxcoff+"
+Produce debugging information in \s-1XCOFF\s0 format (if that is supported),
+using \s-1GNU\s0 extensions understood only by the \s-1GNU\s0 debugger (\s-1GDB\s0).  The
+use of these extensions is likely to make other debuggers crash or
+refuse to read the program, and may cause assemblers other than the \s-1GNU\s0
+assembler (\s-1GAS\s0) to fail with an error.
+.IP "\fB\-gdwarf\-2\fR" 4
+.IX Item "-gdwarf-2"
+Produce debugging information in \s-1DWARF\s0 version 2 format (if that is
+supported).  This is the format used by \s-1DBX\s0 on \s-1IRIX\s0 6.
+.IP "\fB\-gvms\fR" 4
+.IX Item "-gvms"
+Produce debugging information in \s-1VMS\s0 debug format (if that is
+supported).  This is the format used by \s-1DEBUG\s0 on \s-1VMS\s0 systems.
+.IP "\fB\-g\fR\fIlevel\fR" 4
+.IX Item "-glevel"
+.PD 0
+.IP "\fB\-ggdb\fR\fIlevel\fR" 4
+.IX Item "-ggdblevel"
+.IP "\fB\-gstabs\fR\fIlevel\fR" 4
+.IX Item "-gstabslevel"
+.IP "\fB\-gcoff\fR\fIlevel\fR" 4
+.IX Item "-gcofflevel"
+.IP "\fB\-gxcoff\fR\fIlevel\fR" 4
+.IX Item "-gxcofflevel"
+.IP "\fB\-gvms\fR\fIlevel\fR" 4
+.IX Item "-gvmslevel"
+.PD
+Request debugging information and also use \fIlevel\fR to specify how
+much information.  The default level is 2.
+.Sp
+Level 1 produces minimal information, enough for making backtraces in
+parts of the program that you don't plan to debug.  This includes
+descriptions of functions and external variables, but no information
+about local variables and no line numbers.
+.Sp
+Level 3 includes extra information, such as all the macro definitions
+present in the program.  Some debuggers support macro expansion when
+you use \fB\-g3\fR.
+.Sp
+Note that in order to avoid confusion between \s-1DWARF1\s0 debug level 2,
+and \s-1DWARF2\s0 \fB\-gdwarf\-2\fR does not accept a concatenated debug
+level.  Instead use an additional \fB\-g\fR\fIlevel\fR option to
+change the debug level for \s-1DWARF2\s0.
+.IP "\fB\-feliminate\-dwarf2\-dups\fR" 4
+.IX Item "-feliminate-dwarf2-dups"
+Compress \s-1DWARF2\s0 debugging information by eliminating duplicated
+information about each symbol.  This option only makes sense when
+generating \s-1DWARF2\s0 debugging information with \fB\-gdwarf\-2\fR.
+.IP "\fB\-p\fR" 4
+.IX Item "-p"
+Generate extra code to write profile information suitable for the
+analysis program \fBprof\fR.  You must use this option when compiling
+the source files you want data about, and you must also use it when
+linking.
+.IP "\fB\-pg\fR" 4
+.IX Item "-pg"
+Generate extra code to write profile information suitable for the
+analysis program \fBgprof\fR.  You must use this option when compiling
+the source files you want data about, and you must also use it when
+linking.
+.IP "\fB\-Q\fR" 4
+.IX Item "-Q"
+Makes the compiler print out each function name as it is compiled, and
+print some statistics about each pass when it finishes.
+.IP "\fB\-ftime\-report\fR" 4
+.IX Item "-ftime-report"
+Makes the compiler print some statistics about the time consumed by each
+pass when it finishes.
+.IP "\fB\-fmem\-report\fR" 4
+.IX Item "-fmem-report"
+Makes the compiler print some statistics about permanent memory
+allocation when it finishes.
+.IP "\fB\-fprofile\-arcs\fR" 4
+.IX Item "-fprofile-arcs"
+Add code so that program flow \fIarcs\fR are instrumented.  During
+execution the program records how many times each branch and call is
+executed and how many times it is taken or returns.  When the compiled
+program exits it saves this data to a file called
+\&\fI\fIauxname\fI.gcda\fR for each source file. The data may be used for
+profile-directed optimizations (\fB\-fbranch\-probabilities\fR), or for
+test coverage analysis (\fB\-ftest\-coverage\fR). Each object file's
+\&\fIauxname\fR is generated from the name of the output file, if
+explicitly specified and it is not the final executable, otherwise it is
+the basename of the source file. In both cases any suffix is removed
+(e.g.  \fIfoo.gcda\fR for input file \fIdir/foo.c\fR, or
+\&\fIdir/foo.gcda\fR for output file specified as \fB\-o dir/foo.o\fR).
+.RS 4
+.IP "@bullet" 4
+.IX Item "@bullet"
+Compile the source files with \fB\-fprofile\-arcs\fR plus optimization
+and code generation options. For test coverage analysis, use the
+additional \fB\-ftest\-coverage\fR option. You do not need to profile
+every source file in a program.
+.IP "@cvmmfu" 4
+.IX Item "@cvmmfu"
+Link your object files with \fB\-lgcov\fR or \fB\-fprofile\-arcs\fR
+(the latter implies the former).
+.IP "@dwnngv" 4
+.IX Item "@dwnngv"
+Run the program on a representative workload to generate the arc profile
+information. This may be repeated any number of times. You can run
+concurrent instances of your program, and provided that the file system
+supports locking, the data files will be correctly updated. Also
+\&\f(CW\*(C`fork\*(C'\fR calls are detected and correctly handled (double counting
+will not happen).
+.IP "@exoohw" 4
+.IX Item "@exoohw"
+For profile-directed optimizations, compile the source files again with
+the same optimization and code generation options plus
+\&\fB\-fbranch\-probabilities\fR.
+.IP "@fyppix" 4
+.IX Item "@fyppix"
+For test coverage analysis, use \fBgcov\fR to produce human readable
+information from the \fI.gcno\fR and \fI.gcda\fR files. Refer to the
+\&\fBgcov\fR documentation for further information.
+.RE
+.RS 4
+.Sp
+With \fB\-fprofile\-arcs\fR, for each function of your program \s-1GCC\s0
+creates a program flow graph, then finds a spanning tree for the graph.
+Only arcs that are not on the spanning tree have to be instrumented: the
+compiler adds code to count the number of times that these arcs are
+executed.  When an arc is the only exit or only entrance to a block, the
+instrumentation code can be added to the block; otherwise, a new basic
+block must be created to hold the instrumentation code.
+.RE
+.IP "\fB\-ftest\-coverage\fR" 4
+.IX Item "-ftest-coverage"
+Produce a notes file that the \fBgcov\fR code-coverage utility can use to
+show program coverage. Each source file's note file is called
+\&\fI\fIauxname\fI.gcno\fR. Refer to the \fB\-fprofile\-arcs\fR option
+above for a description of \fIauxname\fR and instructions on how to
+generate test coverage data. Coverage data will match the source files
+more closely, if you do not optimize.
+.IP "\fB\-d\fR\fIletters\fR" 4
+.IX Item "-dletters"
+Says to make debugging dumps during compilation at times specified by
+\&\fIletters\fR.  This is used for debugging the compiler.  The file names
+for most of the dumps are made by appending a pass number and a word to
+the \fIdumpname\fR. \fIdumpname\fR is generated from the name of the
+output file, if explicitly specified and it is not an executable,
+otherwise it is the basename of the source file. In both cases any
+suffix is removed (e.g.  \fIfoo.01.rtl\fR or \fIfoo.02.sibling\fR).
+Here are the possible letters for use in \fIletters\fR, and their
+meanings:
+.RS 4
+.IP "\fBA\fR" 4
+.IX Item "A"
+Annotate the assembler output with miscellaneous debugging information.
+.IP "\fBb\fR" 4
+.IX Item "b"
+Dump after computing branch probabilities, to \fI\fIfile\fI.12.bp\fR.
+.IP "\fBB\fR" 4
+.IX Item "B"
+Dump after block reordering, to \fI\fIfile\fI.31.bbro\fR.
+.IP "\fBc\fR" 4
+.IX Item "c"
+Dump after instruction combination, to the file \fI\fIfile\fI.20.combine\fR.
+.IP "\fBC\fR" 4
+.IX Item "C"
+Dump after the first if conversion, to the file \fI\fIfile\fI.14.ce1\fR.
+Also dump after the second if conversion, to the file \fI\fIfile\fI.21.ce2\fR.
+.IP "\fBd\fR" 4
+.IX Item "d"
+Dump after branch target load optimization, to to \fI\fIfile\fI.32.btl\fR.
+Also dump after delayed branch scheduling, to \fI\fIfile\fI.36.dbr\fR.
+.IP "\fBD\fR" 4
+.IX Item "D"
+Dump all macro definitions, at the end of preprocessing, in addition to
+normal output.
+.IP "\fBE\fR" 4
+.IX Item "E"
+Dump after the third if conversion, to \fI\fIfile\fI.30.ce3\fR.
+.IP "\fBf\fR" 4
+.IX Item "f"
+Dump after control and data flow analysis, to \fI\fIfile\fI.11.cfg\fR.
+Also dump after life analysis, to \fI\fIfile\fI.19.life\fR.
+.IP "\fBF\fR" 4
+.IX Item "F"
+Dump after purging \f(CW\*(C`ADDRESSOF\*(C'\fR codes, to \fI\fIfile\fI.07.addressof\fR.
+.IP "\fBg\fR" 4
+.IX Item "g"
+Dump after global register allocation, to \fI\fIfile\fI.25.greg\fR.
+.IP "\fBG\fR" 4
+.IX Item "G"
+Dump after \s-1GCSE\s0, to \fI\fIfile\fI.08.gcse\fR.
+Also dump after jump bypassing and control flow optimizations, to
+\&\fI\fIfile\fI.10.bypass\fR.
+.IP "\fBh\fR" 4
+.IX Item "h"
+Dump after finalization of \s-1EH\s0 handling code, to \fI\fIfile\fI.03.eh\fR.
+.IP "\fBi\fR" 4
+.IX Item "i"
+Dump after sibling call optimizations, to \fI\fIfile\fI.02.sibling\fR.
+.IP "\fBj\fR" 4
+.IX Item "j"
+Dump after the first jump optimization, to \fI\fIfile\fI.04.jump\fR.
+.IP "\fBk\fR" 4
+.IX Item "k"
+Dump after conversion from registers to stack, to \fI\fIfile\fI.34.stack\fR.
+.IP "\fBl\fR" 4
+.IX Item "l"
+Dump after local register allocation, to \fI\fIfile\fI.24.lreg\fR.
+.IP "\fBL\fR" 4
+.IX Item "L"
+Dump after loop optimization passes, to \fI\fIfile\fI.09.loop\fR and
+\&\fI\fIfile\fI.16.loop2\fR.
+.IP "\fBM\fR" 4
+.IX Item "M"
+Dump after performing the machine dependent reorganization pass, to
+\&\fI\fIfile\fI.35.mach\fR.
+.IP "\fBn\fR" 4
+.IX Item "n"
+Dump after register renumbering, to \fI\fIfile\fI.29.rnreg\fR.
+.IP "\fBN\fR" 4
+.IX Item "N"
+Dump after the register move pass, to \fI\fIfile\fI.22.regmove\fR.
+.IP "\fBo\fR" 4
+.IX Item "o"
+Dump after post-reload optimizations, to \fI\fIfile\fI.26.postreload\fR.
+.IP "\fBr\fR" 4
+.IX Item "r"
+Dump after \s-1RTL\s0 generation, to \fI\fIfile\fI.01.rtl\fR.
+.IP "\fBR\fR" 4
+.IX Item "R"
+Dump after the second scheduling pass, to \fI\fIfile\fI.33.sched2\fR.
+.IP "\fBs\fR" 4
+.IX Item "s"
+Dump after \s-1CSE\s0 (including the jump optimization that sometimes follows
+\&\s-1CSE\s0), to \fI\fIfile\fI.06.cse\fR.
+.IP "\fBS\fR" 4
+.IX Item "S"
+Dump after the first scheduling pass, to \fI\fIfile\fI.23.sched\fR.
+.IP "\fBt\fR" 4
+.IX Item "t"
+Dump after the second \s-1CSE\s0 pass (including the jump optimization that
+sometimes follows \s-1CSE\s0), to \fI\fIfile\fI.18.cse2\fR.
+.IP "\fBT\fR" 4
+.IX Item "T"
+Dump after running tracer, to \fI\fIfile\fI.15.tracer\fR.
+.IP "\fBu\fR" 4
+.IX Item "u"
+Dump after null pointer elimination pass to \fI\fIfile\fI.05.null\fR.
+.IP "\fBU\fR" 4
+.IX Item "U"
+Dump callgraph and unit-at-a-time optimization \fI\fIfile\fI.00.unit\fR.
+.IP "\fBV\fR" 4
+.IX Item "V"
+Dump after the value profile transformations, to \fI\fIfile\fI.13.vpt\fR.
+.IP "\fBw\fR" 4
+.IX Item "w"
+Dump after the second flow pass, to \fI\fIfile\fI.27.flow2\fR.
+.IP "\fBz\fR" 4
+.IX Item "z"
+Dump after the peephole pass, to \fI\fIfile\fI.28.peephole2\fR.
+.IP "\fBZ\fR" 4
+.IX Item "Z"
+Dump after constructing the web, to \fI\fIfile\fI.17.web\fR.
+.IP "\fBa\fR" 4
+.IX Item "a"
+Produce all the dumps listed above.
+.IP "\fBH\fR" 4
+.IX Item "H"
+Produce a core dump whenever an error occurs.
+.IP "\fBm\fR" 4
+.IX Item "m"
+Print statistics on memory usage, at the end of the run, to
+standard error.
+.IP "\fBp\fR" 4
+.IX Item "p"
+Annotate the assembler output with a comment indicating which
+pattern and alternative was used.  The length of each instruction is
+also printed.
+.IP "\fBP\fR" 4
+.IX Item "P"
+Dump the \s-1RTL\s0 in the assembler output as a comment before each instruction.
+Also turns on \fB\-dp\fR annotation.
+.IP "\fBv\fR" 4
+.IX Item "v"
+For each of the other indicated dump files (except for
+\&\fI\fIfile\fI.01.rtl\fR), dump a representation of the control flow graph
+suitable for viewing with \s-1VCG\s0 to \fI\fIfile\fI.\fIpass\fI.vcg\fR.
+.IP "\fBx\fR" 4
+.IX Item "x"
+Just generate \s-1RTL\s0 for a function instead of compiling it.  Usually used
+with \fBr\fR.
+.IP "\fBy\fR" 4
+.IX Item "y"
+Dump debugging information during parsing, to standard error.
+.RE
+.RS 4
+.RE
+.IP "\fB\-fdump\-unnumbered\fR" 4
+.IX Item "-fdump-unnumbered"
+When doing debugging dumps (see \fB\-d\fR option above), suppress instruction
+numbers and line number note output.  This makes it more feasible to
+use diff on debugging dumps for compiler invocations with different
+options, in particular with and without \fB\-g\fR.
+.IP "\fB\-fdump\-translation\-unit\fR (C and \*(C+ only)" 4
+.IX Item "-fdump-translation-unit (C and  only)"
+.PD 0
+.IP "\fB\-fdump\-translation\-unit\-\fR\fIoptions\fR\fB \fR(C and \*(C+ only)" 4
+.IX Item "-fdump-translation-unit-options (C and  only)"
+.PD
+Dump a representation of the tree structure for the entire translation
+unit to a file.  The file name is made by appending \fI.tu\fR to the
+source file name.  If the \fB\-\fR\fIoptions\fR form is used, \fIoptions\fR
+controls the details of the dump as described for the
+\&\fB\-fdump\-tree\fR options.
+.IP "\fB\-fdump\-class\-hierarchy\fR (\*(C+ only)" 4
+.IX Item "-fdump-class-hierarchy ( only)"
+.PD 0
+.IP "\fB\-fdump\-class\-hierarchy\-\fR\fIoptions\fR\fB \fR(\*(C+ only)" 4
+.IX Item "-fdump-class-hierarchy-options ( only)"
+.PD
+Dump a representation of each class's hierarchy and virtual function
+table layout to a file.  The file name is made by appending \fI.class\fR
+to the source file name.  If the \fB\-\fR\fIoptions\fR form is used,
+\&\fIoptions\fR controls the details of the dump as described for the
+\&\fB\-fdump\-tree\fR options.
+.IP "\fB\-fdump\-tree\-\fR\fIswitch\fR\fB \fR(\*(C+ only)" 4
+.IX Item "-fdump-tree-switch ( only)"
+.PD 0
+.IP "\fB\-fdump\-tree\-\fR\fIswitch\fR\fB\-\fR\fIoptions\fR\fB \fR(\*(C+ only)" 4
+.IX Item "-fdump-tree-switch-options ( only)"
+.PD
+Control the dumping at various stages of processing the intermediate
+language tree to a file.  The file name is generated by appending a switch
+specific suffix to the source file name.  If the \fB\-\fR\fIoptions\fR
+form is used, \fIoptions\fR is a list of \fB\-\fR separated options that
+control the details of the dump. Not all options are applicable to all
+dumps, those which are not meaningful will be ignored. The following
+options are available
+.RS 4
+.IP "\fBaddress\fR" 4
+.IX Item "address"
+Print the address of each node.  Usually this is not meaningful as it
+changes according to the environment and source file. Its primary use
+is for tying up a dump file with a debug environment.
+.IP "\fBslim\fR" 4
+.IX Item "slim"
+Inhibit dumping of members of a scope or body of a function merely
+because that scope has been reached. Only dump such items when they
+are directly reachable by some other path.
+.IP "\fBall\fR" 4
+.IX Item "all"
+Turn on all options.
+.RE
+.RS 4
+.Sp
+The following tree dumps are possible:
+.IP "\fBoriginal\fR" 4
+.IX Item "original"
+Dump before any tree based optimization, to \fI\fIfile\fI.original\fR.
+.IP "\fBoptimized\fR" 4
+.IX Item "optimized"
+Dump after all tree based optimization, to \fI\fIfile\fI.optimized\fR.
+.IP "\fBinlined\fR" 4
+.IX Item "inlined"
+Dump after function inlining, to \fI\fIfile\fI.inlined\fR.
+.RE
+.RS 4
+.RE
+.IP "\fB\-frandom\-seed=\fR\fIstring\fR" 4
+.IX Item "-frandom-seed=string"
+This option provides a seed that \s-1GCC\s0 uses when it would otherwise use
+random numbers.  It is used to generate certain symbol names
+that have to be different in every compiled file. It is also used to
+place unique stamps in coverage data files and the object files that
+produce them. You can use the \fB\-frandom\-seed\fR option to produce
+reproducibly identical object files.
+.Sp
+The \fIstring\fR should be different for every file you compile.
+.IP "\fB\-fsched\-verbose=\fR\fIn\fR" 4
+.IX Item "-fsched-verbose=n"
+On targets that use instruction scheduling, this option controls the
+amount of debugging output the scheduler prints.  This information is
+written to standard error, unless \fB\-dS\fR or \fB\-dR\fR is
+specified, in which case it is output to the usual dump
+listing file, \fI.sched\fR or \fI.sched2\fR respectively.  However
+for \fIn\fR greater than nine, the output is always printed to standard
+error.
+.Sp
+For \fIn\fR greater than zero, \fB\-fsched\-verbose\fR outputs the
+same information as \fB\-dRS\fR.  For \fIn\fR greater than one, it
+also output basic block probabilities, detailed ready list information
+and unit/insn info.  For \fIn\fR greater than two, it includes \s-1RTL\s0
+at abort point, control-flow and regions info.  And for \fIn\fR over
+four, \fB\-fsched\-verbose\fR also includes dependence info.
+.IP "\fB\-save\-temps\fR" 4
+.IX Item "-save-temps"
+Store the usual ``temporary'' intermediate files permanently; place them
+in the current directory and name them based on the source file.  Thus,
+compiling \fIfoo.c\fR with \fB\-c \-save\-temps\fR would produce files
+\&\fIfoo.i\fR and \fIfoo.s\fR, as well as \fIfoo.o\fR.  This creates a
+preprocessed \fIfoo.i\fR output file even though the compiler now
+normally uses an integrated preprocessor.
+.IP "\fB\-time\fR" 4
+.IX Item "-time"
+Report the \s-1CPU\s0 time taken by each subprocess in the compilation
+sequence.  For C source files, this is the compiler proper and assembler
+(plus the linker if linking is done).  The output looks like this:
+.Sp
+.Vb 2
+\&        # cc1 0.12 0.01
+\&        # as 0.00 0.01
+.Ve
+.Sp
+The first number on each line is the ``user time,'' that is time spent
+executing the program itself.  The second number is ``system time,''
+time spent executing operating system routines on behalf of the program.
+Both numbers are in seconds.
+.IP "\fB\-print\-file\-name=\fR\fIlibrary\fR" 4
+.IX Item "-print-file-name=library"
+Print the full absolute name of the library file \fIlibrary\fR that
+would be used when linking\-\-\-and don't do anything else.  With this
+option, \s-1GCC\s0 does not compile or link anything; it just prints the
+file name.
+.IP "\fB\-print\-multi\-directory\fR" 4
+.IX Item "-print-multi-directory"
+Print the directory name corresponding to the multilib selected by any
+other switches present in the command line.  This directory is supposed
+to exist in \fB\s-1GCC_EXEC_PREFIX\s0\fR.
+.IP "\fB\-print\-multi\-lib\fR" 4
+.IX Item "-print-multi-lib"
+Print the mapping from multilib directory names to compiler switches
+that enable them.  The directory name is separated from the switches by
+\&\fB;\fR, and each switch starts with an \fB@} instead of the
+\&\f(CB@samp\fB{\-\fR, without spaces between multiple switches.  This is supposed to
+ease shell\-processing.
+.IP "\fB\-print\-prog\-name=\fR\fIprogram\fR" 4
+.IX Item "-print-prog-name=program"
+Like \fB\-print\-file\-name\fR, but searches for a program such as \fBcpp\fR.
+.IP "\fB\-print\-libgcc\-file\-name\fR" 4
+.IX Item "-print-libgcc-file-name"
+Same as \fB\-print\-file\-name=libgcc.a\fR.
+.Sp
+This is useful when you use \fB\-nostdlib\fR or \fB\-nodefaultlibs\fR
+but you do want to link with \fIlibgcc.a\fR.  You can do
+.Sp
+.Vb 1
+\&        gcc -nostdlib <files>... `gcc -print-libgcc-file-name`
+.Ve
+.IP "\fB\-print\-search\-dirs\fR" 4
+.IX Item "-print-search-dirs"
+Print the name of the configured installation directory and a list of
+program and library directories \fBgcc\fR will search\-\-\-and don't do anything else.
+.Sp
+This is useful when \fBgcc\fR prints the error message
+\&\fBinstallation problem, cannot exec cpp0: No such file or directory\fR.
+To resolve this you either need to put \fIcpp0\fR and the other compiler
+components where \fBgcc\fR expects to find them, or you can set the environment
+variable \fB\s-1GCC_EXEC_PREFIX\s0\fR to the directory where you installed them.
+Don't forget the trailing '/'.
+.IP "\fB\-dumpmachine\fR" 4
+.IX Item "-dumpmachine"
+Print the compiler's target machine (for example,
+\&\fBi686\-pc\-linux\-gnu\fR)\-\-\-and don't do anything else.
+.IP "\fB\-dumpversion\fR" 4
+.IX Item "-dumpversion"
+Print the compiler version (for example, \fB3.0\fR)\-\-\-and don't do
+anything else.
+.IP "\fB\-dumpspecs\fR" 4
+.IX Item "-dumpspecs"
+Print the compiler's built-in specs\-\-\-and don't do anything else.  (This
+is used when \s-1GCC\s0 itself is being built.)  
+.IP "\fB\-feliminate\-unused\-debug\-types\fR" 4
+.IX Item "-feliminate-unused-debug-types"
+Normally, when producing \s-1DWARF2\s0 output, \s-1GCC\s0 will emit debugging
+information for all types declared in a compilation
+unit, regardless of whether or not they are actually used
+in that compilation unit.  Sometimes this is useful, such as
+if, in the debugger, you want to cast a value to a type that is
+not actually used in your program (but is declared).  More often,
+however, this results in a significant amount of wasted space.
+With this option, \s-1GCC\s0 will avoid producing debug symbol output
+for types that are nowhere used in the source file being compiled.
+.Sh "Options That Control Optimization"
+.IX Subsection "Options That Control Optimization"
+These options control various sorts of optimizations.
+.PP
+Without any optimization option, the compiler's goal is to reduce the
+cost of compilation and to make debugging produce the expected
+results.  Statements are independent: if you stop the program with a
+breakpoint between statements, you can then assign a new value to any
+variable or change the program counter to any other statement in the
+function and get exactly the results you would expect from the source
+code.
+.PP
+Turning on optimization flags makes the compiler attempt to improve
+the performance and/or code size at the expense of compilation time
+and possibly the ability to debug the program.
+.PP
+The compiler performs optimization based on the knowledge it has of
+the program.  Using the \fB\-funit\-at\-a\-time\fR flag will allow the
+compiler to consider information gained from later functions in the
+file when compiling a function.  Compiling multiple files at once to a
+single output file (and using \fB\-funit\-at\-a\-time\fR) will allow
+the compiler to use information gained from all of the files when
+compiling each of them.
+.PP
+Not all optimizations are controlled directly by a flag.  Only
+optimizations that have a flag are listed.
+.IP "\fB\-O\fR" 4
+.IX Item "-O"
+.PD 0
+.IP "\fB\-O1\fR" 4
+.IX Item "-O1"
+.PD
+Optimize.  Optimizing compilation takes somewhat more time, and a lot
+more memory for a large function.
+.Sp
+With \fB\-O\fR, the compiler tries to reduce code size and execution
+time, without performing any optimizations that take a great deal of
+compilation time.
+.Sp
+\&\fB\-O\fR turns on the following optimization flags:
+\&\fB\-fdefer\-pop 
+\&\-fmerge\-constants 
+\&\-fthread\-jumps 
+\&\-floop\-optimize 
+\&\-fif\-conversion 
+\&\-fif\-conversion2 
+\&\-fdelayed\-branch 
+\&\-fguess\-branch\-probability 
+\&\-fcprop\-registers\fR
+.Sp
+\&\fB\-O\fR also turns on \fB\-fomit\-frame\-pointer\fR on machines
+where doing so does not interfere with debugging.
+.IP "\fB\-O2\fR" 4
+.IX Item "-O2"
+Optimize even more.  \s-1GCC\s0 performs nearly all supported optimizations
+that do not involve a space-speed tradeoff.  The compiler does not
+perform loop unrolling or function inlining when you specify \fB\-O2\fR.
+As compared to \fB\-O\fR, this option increases both compilation time
+and the performance of the generated code.
+.Sp
+\&\fB\-O2\fR turns on all optimization flags specified by \fB\-O\fR.  It
+also turns on the following optimization flags:
+\&\fB\-fforce\-mem 
+\&\-foptimize\-sibling\-calls 
+\&\-fstrength\-reduce 
+\&\-fcse\-follow\-jumps  \-fcse\-skip\-blocks 
+\&\-frerun\-cse\-after\-loop  \-frerun\-loop\-opt 
+\&\-fgcse  \-fgcse\-lm  \-fgcse\-sm  \-fgcse\-las 
+\&\-fdelete\-null\-pointer\-checks 
+\&\-fexpensive\-optimizations 
+\&\-fregmove 
+\&\-fschedule\-insns  \-fschedule\-insns2 
+\&\-fsched\-interblock  \-fsched\-spec 
+\&\-fcaller\-saves 
+\&\-fpeephole2 
+\&\-freorder\-blocks  \-freorder\-functions 
+\&\-fstrict\-aliasing 
+\&\-funit\-at\-a\-time 
+\&\-falign\-functions  \-falign\-jumps 
+\&\-falign\-loops  \-falign\-labels 
+\&\-fcrossjumping\fR
+.Sp
+Please note the warning under \fB\-fgcse\fR about
+invoking \fB\-O2\fR on programs that use computed gotos.
+.IP "\fB\-O3\fR" 4
+.IX Item "-O3"
+Optimize yet more.  \fB\-O3\fR turns on all optimizations specified by
+\&\fB\-O2\fR and also turns on the \fB\-finline\-functions\fR,
+\&\fB\-fweb\fR and \fB\-frename\-registers\fR options.
+.IP "\fB\-O0\fR" 4
+.IX Item "-O0"
+Do not optimize.  This is the default.
+.IP "\fB\-Os\fR" 4
+.IX Item "-Os"
+Optimize for size.  \fB\-Os\fR enables all \fB\-O2\fR optimizations that
+do not typically increase code size.  It also performs further
+optimizations designed to reduce code size.
+.Sp
+\&\fB\-Os\fR disables the following optimization flags:
+\&\fB\-falign\-functions  \-falign\-jumps  \-falign\-loops 
+\&\-falign\-labels  \-freorder\-blocks  \-fprefetch\-loop\-arrays\fR
+.Sp
+If you use multiple \fB\-O\fR options, with or without level numbers,
+the last such option is the one that is effective.
+.PP
+Options of the form \fB\-f\fR\fIflag\fR specify machine-independent
+flags.  Most flags have both positive and negative forms; the negative
+form of \fB\-ffoo\fR would be \fB\-fno\-foo\fR.  In the table
+below, only one of the forms is listed\-\-\-the one you typically will
+use.  You can figure out the other form by either removing \fBno\-\fR
+or adding it.
+.PP
+The following options control specific optimizations.  They are either
+activated by \fB\-O\fR options or are related to ones that are.  You
+can use the following flags in the rare cases when ``fine\-tuning'' of
+optimizations to be performed is desired.
+.IP "\fB\-fno\-default\-inline\fR" 4
+.IX Item "-fno-default-inline"
+Do not make member functions inline by default merely because they are
+defined inside the class scope (\*(C+ only).  Otherwise, when you specify
+\&\fB\-O\fR, member functions defined inside class scope are compiled
+inline by default; i.e., you don't need to add \fBinline\fR in front of
+the member function name.
+.IP "\fB\-fno\-defer\-pop\fR" 4
+.IX Item "-fno-defer-pop"
+Always pop the arguments to each function call as soon as that function
+returns.  For machines which must pop arguments after a function call,
+the compiler normally lets arguments accumulate on the stack for several
+function calls and pops them all at once.
+.Sp
+Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fforce\-mem\fR" 4
+.IX Item "-fforce-mem"
+Force memory operands to be copied into registers before doing
+arithmetic on them.  This produces better code by making all memory
+references potential common subexpressions.  When they are not common
+subexpressions, instruction combination should eliminate the separate
+register\-load.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fforce\-addr\fR" 4
+.IX Item "-fforce-addr"
+Force memory address constants to be copied into registers before
+doing arithmetic on them.  This may produce better code just as
+\&\fB\-fforce\-mem\fR may.
+.IP "\fB\-fomit\-frame\-pointer\fR" 4
+.IX Item "-fomit-frame-pointer"
+Don't keep the frame pointer in a register for functions that
+don't need one.  This avoids the instructions to save, set up and
+restore frame pointers; it also makes an extra register available
+in many functions.  \fBIt also makes debugging impossible on
+some machines.\fR
+.Sp
+On some machines, such as the \s-1VAX\s0, this flag has no effect, because
+the standard calling sequence automatically handles the frame pointer
+and nothing is saved by pretending it doesn't exist.  The
+machine-description macro \f(CW\*(C`FRAME_POINTER_REQUIRED\*(C'\fR controls
+whether a target machine supports this flag.  
+.Sp
+Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-foptimize\-sibling\-calls\fR" 4
+.IX Item "-foptimize-sibling-calls"
+Optimize sibling and tail recursive calls.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fno\-inline\fR" 4
+.IX Item "-fno-inline"
+Don't pay attention to the \f(CW\*(C`inline\*(C'\fR keyword.  Normally this option
+is used to keep the compiler from expanding any functions inline.
+Note that if you are not optimizing, no functions can be expanded inline.
+.IP "\fB\-finline\-functions\fR" 4
+.IX Item "-finline-functions"
+Integrate all simple functions into their callers.  The compiler
+heuristically decides which functions are simple enough to be worth
+integrating in this way.
+.Sp
+If all calls to a given function are integrated, and the function is
+declared \f(CW\*(C`static\*(C'\fR, then the function is normally not output as
+assembler code in its own right.
+.Sp
+Enabled at level \fB\-O3\fR.
+.IP "\fB\-finline\-limit=\fR\fIn\fR" 4
+.IX Item "-finline-limit=n"
+By default, \s-1GCC\s0 limits the size of functions that can be inlined.  This flag
+allows the control of this limit for functions that are explicitly marked as
+inline (i.e., marked with the inline keyword or defined within the class
+definition in c++).  \fIn\fR is the size of functions that can be inlined in
+number of pseudo instructions (not counting parameter handling).  The default
+value of \fIn\fR is 600.
+Increasing this value can result in more inlined code at
+the cost of compilation time and memory consumption.  Decreasing usually makes
+the compilation faster and less code will be inlined (which presumably
+means slower programs).  This option is particularly useful for programs that
+use inlining heavily such as those based on recursive templates with \*(C+.
+.Sp
+Inlining is actually controlled by a number of parameters, which may be
+specified individually by using \fB\-\-param\fR \fIname\fR\fB=\fR\fIvalue\fR.
+The \fB\-finline\-limit=\fR\fIn\fR option sets some of these parameters
+as follows:
+.RS 4
+.Sp
+.Vb 8
+\& @item max-inline-insns-single
+\&  is set to I<n>/2.
+\& @item max-inline-insns-auto
+\&  is set to I<n>/2.
+\& @item min-inline-insns
+\&  is set to 130 or I<n>/4, whichever is smaller.
+\& @item max-inline-insns-rtl
+\&  is set to I<n>.
+.Ve
+.RE
+.RS 4
+.Sp
+See below for a documentation of the individual
+parameters controlling inlining.
+.Sp
+\&\fINote:\fR pseudo instruction represents, in this particular context, an
+abstract measurement of function's size.  In no way, it represents a count
+of assembly instructions and as such its exact meaning might change from one
+release to an another.
+.RE
+.IP "\fB\-fkeep\-inline\-functions\fR" 4
+.IX Item "-fkeep-inline-functions"
+Even if all calls to a given function are integrated, and the function
+is declared \f(CW\*(C`static\*(C'\fR, nevertheless output a separate run-time
+callable version of the function.  This switch does not affect
+\&\f(CW\*(C`extern inline\*(C'\fR functions.
+.IP "\fB\-fkeep\-static\-consts\fR" 4
+.IX Item "-fkeep-static-consts"
+Emit variables declared \f(CW\*(C`static const\*(C'\fR when optimization isn't turned
+on, even if the variables aren't referenced.
+.Sp
+\&\s-1GCC\s0 enables this option by default.  If you want to force the compiler to
+check if the variable was referenced, regardless of whether or not
+optimization is turned on, use the \fB\-fno\-keep\-static\-consts\fR option.
+.IP "\fB\-fmerge\-constants\fR" 4
+.IX Item "-fmerge-constants"
+Attempt to merge identical constants (string constants and floating point
+constants) across compilation units.
+.Sp
+This option is the default for optimized compilation if the assembler and
+linker support it.  Use \fB\-fno\-merge\-constants\fR to inhibit this
+behavior.
+.Sp
+Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fmerge\-all\-constants\fR" 4
+.IX Item "-fmerge-all-constants"
+Attempt to merge identical constants and identical variables.
+.Sp
+This option implies \fB\-fmerge\-constants\fR.  In addition to
+\&\fB\-fmerge\-constants\fR this considers e.g. even constant initialized
+arrays or initialized constant variables with integral or floating point
+types.  Languages like C or \*(C+ require each non-automatic variable to
+have distinct location, so using this option will result in non-conforming
+behavior.
+.IP "\fB\-fnew\-ra\fR" 4
+.IX Item "-fnew-ra"
+Use a graph coloring register allocator.  Currently this option is meant
+only for testing.  Users should not specify this option, since it is not
+yet ready for production use.
+.IP "\fB\-fno\-branch\-count\-reg\fR" 4
+.IX Item "-fno-branch-count-reg"
+Do not use ``decrement and branch'' instructions on a count register,
+but instead generate a sequence of instructions that decrement a
+register, compare it against zero, then branch based upon the result.
+This option is only meaningful on architectures that support such
+instructions, which include x86, PowerPC, \s-1IA\-64\s0 and S/390.
+.Sp
+The default is \fB\-fbranch\-count\-reg\fR, enabled when
+\&\fB\-fstrength\-reduce\fR is enabled.
+.IP "\fB\-fno\-function\-cse\fR" 4
+.IX Item "-fno-function-cse"
+Do not put function addresses in registers; make each instruction that
+calls a constant function contain the function's address explicitly.
+.Sp
+This option results in less efficient code, but some strange hacks
+that alter the assembler output may be confused by the optimizations
+performed when this option is not used.
+.Sp
+The default is \fB\-ffunction\-cse\fR
+.IP "\fB\-fno\-zero\-initialized\-in\-bss\fR" 4
+.IX Item "-fno-zero-initialized-in-bss"
+If the target supports a \s-1BSS\s0 section, \s-1GCC\s0 by default puts variables that
+are initialized to zero into \s-1BSS\s0.  This can save space in the resulting
+code.
+.Sp
+This option turns off this behavior because some programs explicitly
+rely on variables going to the data section.  E.g., so that the
+resulting executable can find the beginning of that section and/or make
+assumptions based on that.
+.Sp
+The default is \fB\-fzero\-initialized\-in\-bss\fR.
+.IP "\fB\-fstrength\-reduce\fR" 4
+.IX Item "-fstrength-reduce"
+Perform the optimizations of loop strength reduction and
+elimination of iteration variables.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fthread\-jumps\fR" 4
+.IX Item "-fthread-jumps"
+Perform optimizations where we check to see if a jump branches to a
+location where another comparison subsumed by the first is found.  If
+so, the first branch is redirected to either the destination of the
+second branch or a point immediately following it, depending on whether
+the condition is known to be true or false.
+.Sp
+Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fcse\-follow\-jumps\fR" 4
+.IX Item "-fcse-follow-jumps"
+In common subexpression elimination, scan through jump instructions
+when the target of the jump is not reached by any other path.  For
+example, when \s-1CSE\s0 encounters an \f(CW\*(C`if\*(C'\fR statement with an
+\&\f(CW\*(C`else\*(C'\fR clause, \s-1CSE\s0 will follow the jump when the condition
+tested is false.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fcse\-skip\-blocks\fR" 4
+.IX Item "-fcse-skip-blocks"
+This is similar to \fB\-fcse\-follow\-jumps\fR, but causes \s-1CSE\s0 to
+follow jumps which conditionally skip over blocks.  When \s-1CSE\s0
+encounters a simple \f(CW\*(C`if\*(C'\fR statement with no else clause,
+\&\fB\-fcse\-skip\-blocks\fR causes \s-1CSE\s0 to follow the jump around the
+body of the \f(CW\*(C`if\*(C'\fR.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-frerun\-cse\-after\-loop\fR" 4
+.IX Item "-frerun-cse-after-loop"
+Re-run common subexpression elimination after loop optimizations has been
+performed.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-frerun\-loop\-opt\fR" 4
+.IX Item "-frerun-loop-opt"
+Run the loop optimizer twice.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fgcse\fR" 4
+.IX Item "-fgcse"
+Perform a global common subexpression elimination pass.
+This pass also performs global constant and copy propagation.
+.Sp
+\&\fINote:\fR When compiling a program using computed gotos, a \s-1GCC\s0
+extension, you may get better runtime performance if you disable
+the global common subexpression elimination pass by adding
+\&\fB\-fno\-gcse\fR to the command line.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fgcse\-lm\fR" 4
+.IX Item "-fgcse-lm"
+When \fB\-fgcse\-lm\fR is enabled, global common subexpression elimination will
+attempt to move loads which are only killed by stores into themselves.  This
+allows a loop containing a load/store sequence to be changed to a load outside
+the loop, and a copy/store within the loop.
+.Sp
+Enabled by default when gcse is enabled.
+.IP "\fB\-fgcse\-sm\fR" 4
+.IX Item "-fgcse-sm"
+When \fB\-fgcse\-sm\fR is enabled, a store motion pass is run after
+global common subexpression elimination.  This pass will attempt to move
+stores out of loops.  When used in conjunction with \fB\-fgcse\-lm\fR,
+loops containing a load/store sequence can be changed to a load before
+the loop and a store after the loop.
+.Sp
+Enabled by default when gcse is enabled.
+.IP "\fB\-fgcse\-las\fR" 4
+.IX Item "-fgcse-las"
+When \fB\-fgcse\-las\fR is enabled, the global common subexpression
+elimination pass eliminates redundant loads that come after stores to the
+same memory location (both partial and full redundancies).
+.Sp
+Enabled by default when gcse is enabled.
+.IP "\fB\-floop\-optimize\fR" 4
+.IX Item "-floop-optimize"
+Perform loop optimizations: move constant expressions out of loops, simplify
+exit test conditions and optionally do strength-reduction and loop unrolling as
+well.
+.Sp
+Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fcrossjumping\fR" 4
+.IX Item "-fcrossjumping"
+Perform cross-jumping transformation. This transformation unifies equivalent code and save code size. The
+resulting code may or may not perform better than without cross\-jumping.
+.Sp
+Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fif\-conversion\fR" 4
+.IX Item "-fif-conversion"
+Attempt to transform conditional jumps into branch-less equivalents.  This
+include use of conditional moves, min, max, set flags and abs instructions, and
+some tricks doable by standard arithmetics.  The use of conditional execution
+on chips where it is available is controlled by \f(CW\*(C`if\-conversion2\*(C'\fR.
+.Sp
+Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fif\-conversion2\fR" 4
+.IX Item "-fif-conversion2"
+Use conditional execution (where available) to transform conditional jumps into
+branch-less equivalents.
+.Sp
+Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fdelete\-null\-pointer\-checks\fR" 4
+.IX Item "-fdelete-null-pointer-checks"
+Use global dataflow analysis to identify and eliminate useless checks
+for null pointers.  The compiler assumes that dereferencing a null
+pointer would have halted the program.  If a pointer is checked after
+it has already been dereferenced, it cannot be null.
+.Sp
+In some environments, this assumption is not true, and programs can
+safely dereference null pointers.  Use
+\&\fB\-fno\-delete\-null\-pointer\-checks\fR to disable this optimization
+for programs which depend on that behavior.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fexpensive\-optimizations\fR" 4
+.IX Item "-fexpensive-optimizations"
+Perform a number of minor optimizations that are relatively expensive.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-foptimize\-register\-move\fR" 4
+.IX Item "-foptimize-register-move"
+.PD 0
+.IP "\fB\-fregmove\fR" 4
+.IX Item "-fregmove"
+.PD
+Attempt to reassign register numbers in move instructions and as
+operands of other simple instructions in order to maximize the amount of
+register tying.  This is especially helpful on machines with two-operand
+instructions.
+.Sp
+Note \fB\-fregmove\fR and \fB\-foptimize\-register\-move\fR are the same
+optimization.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fdelayed\-branch\fR" 4
+.IX Item "-fdelayed-branch"
+If supported for the target machine, attempt to reorder instructions
+to exploit instruction slots available after delayed branch
+instructions.
+.Sp
+Enabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fschedule\-insns\fR" 4
+.IX Item "-fschedule-insns"
+If supported for the target machine, attempt to reorder instructions to
+eliminate execution stalls due to required data being unavailable.  This
+helps machines that have slow floating point or memory load instructions
+by allowing other instructions to be issued until the result of the load
+or floating point instruction is required.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fschedule\-insns2\fR" 4
+.IX Item "-fschedule-insns2"
+Similar to \fB\-fschedule\-insns\fR, but requests an additional pass of
+instruction scheduling after register allocation has been done.  This is
+especially useful on machines with a relatively small number of
+registers and where memory load instructions take more than one cycle.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fno\-sched\-interblock\fR" 4
+.IX Item "-fno-sched-interblock"
+Don't schedule instructions across basic blocks.  This is normally
+enabled by default when scheduling before register allocation, i.e.
+with \fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
+.IP "\fB\-fno\-sched\-spec\fR" 4
+.IX Item "-fno-sched-spec"
+Don't allow speculative motion of non-load instructions.  This is normally
+enabled by default when scheduling before register allocation, i.e.
+with \fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
+.IP "\fB\-fsched\-spec\-load\fR" 4
+.IX Item "-fsched-spec-load"
+Allow speculative motion of some load instructions.  This only makes
+sense when scheduling before register allocation, i.e. with
+\&\fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
+.IP "\fB\-fsched\-spec\-load\-dangerous\fR" 4
+.IX Item "-fsched-spec-load-dangerous"
+Allow speculative motion of more load instructions.  This only makes
+sense when scheduling before register allocation, i.e. with
+\&\fB\-fschedule\-insns\fR or at \fB\-O2\fR or higher.
+.IP "\fB\-fsched\-stalled\-insns=\fR\fIn\fR" 4
+.IX Item "-fsched-stalled-insns=n"
+Define how many insns (if any) can be moved prematurely from the queue
+of stalled insns into the ready list, during the second scheduling pass.
+.IP "\fB\-fsched\-stalled\-insns\-dep=\fR\fIn\fR" 4
+.IX Item "-fsched-stalled-insns-dep=n"
+Define how many insn groups (cycles) will be examined for a dependency
+on a stalled insn that is candidate for premature removal from the queue
+of stalled insns.  Has an effect only during the second scheduling pass,
+and only if \fB\-fsched\-stalled\-insns\fR is used and its value is not zero.
+.IP "\fB\-fsched2\-use\-superblocks\fR" 4
+.IX Item "-fsched2-use-superblocks"
+When scheduling after register allocation, do use superblock scheduling
+algorithm.  Superblock scheduling allows motion across basic block boundaries
+resulting on faster schedules.  This option is experimental, as not all machine
+descriptions used by \s-1GCC\s0 model the \s-1CPU\s0 closely enough to avoid unreliable
+results from the algorithm.
+.Sp
+This only makes sense when scheduling after register allocation, i.e. with
+\&\fB\-fschedule\-insns2\fR or at \fB\-O2\fR or higher.
+.IP "\fB\-fsched2\-use\-traces\fR" 4
+.IX Item "-fsched2-use-traces"
+Use \fB\-fsched2\-use\-superblocks\fR algorithm when scheduling after register
+allocation and additionally perform code duplication in order to increase the
+size of superblocks using tracer pass.  See \fB\-ftracer\fR for details on
+trace formation.
+.Sp
+This mode should produce faster but significantly longer programs.  Also
+without \f(CW\*(C`\-fbranch\-probabilities\*(C'\fR the traces constructed may not match the
+reality and hurt the performance.  This only makes
+sense when scheduling after register allocation, i.e. with
+\&\fB\-fschedule\-insns2\fR or at \fB\-O2\fR or higher.
+.IP "\fB\-fcaller\-saves\fR" 4
+.IX Item "-fcaller-saves"
+Enable values to be allocated in registers that will be clobbered by
+function calls, by emitting extra instructions to save and restore the
+registers around such calls.  Such allocation is done only when it
+seems to result in better code than would otherwise be produced.
+.Sp
+This option is always enabled by default on certain machines, usually
+those which have no call-preserved registers to use instead.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fmove\-all\-movables\fR" 4
+.IX Item "-fmove-all-movables"
+Forces all invariant computations in loops to be moved
+outside the loop.
+.IP "\fB\-freduce\-all\-givs\fR" 4
+.IX Item "-freduce-all-givs"
+Forces all general-induction variables in loops to be
+strength\-reduced.
+.Sp
+\&\fINote:\fR When compiling programs written in Fortran,
+\&\fB\-fmove\-all\-movables\fR and \fB\-freduce\-all\-givs\fR are enabled
+by default when you use the optimizer.
+.Sp
+These options may generate better or worse code; results are highly
+dependent on the structure of loops within the source code.
+.Sp
+These two options are intended to be removed someday, once
+they have helped determine the efficacy of various
+approaches to improving loop optimizations.
+.Sp
+Please contact <\[email protected]\fR>, and describe how use of
+these options affects the performance of your production code.
+Examples of code that runs \fIslower\fR when these options are
+\&\fIenabled\fR are very valuable.
+.IP "\fB\-fno\-peephole\fR" 4
+.IX Item "-fno-peephole"
+.PD 0
+.IP "\fB\-fno\-peephole2\fR" 4
+.IX Item "-fno-peephole2"
+.PD
+Disable any machine-specific peephole optimizations.  The difference
+between \fB\-fno\-peephole\fR and \fB\-fno\-peephole2\fR is in how they
+are implemented in the compiler; some targets use one, some use the
+other, a few use both.
+.Sp
+\&\fB\-fpeephole\fR is enabled by default.
+\&\fB\-fpeephole2\fR enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fno\-guess\-branch\-probability\fR" 4
+.IX Item "-fno-guess-branch-probability"
+Do not guess branch probabilities using a randomized model.
+.Sp
+Sometimes \s-1GCC\s0 will opt to use a randomized model to guess branch
+probabilities, when none are available from either profiling feedback
+(\fB\-fprofile\-arcs\fR) or \fB_\|_builtin_expect\fR.  This means that
+different runs of the compiler on the same program may produce different
+object code.
+.Sp
+In a hard real-time system, people don't want different runs of the
+compiler to produce code that has different behavior; minimizing
+non-determinism is of paramount import.  This switch allows users to
+reduce non\-determinism, possibly at the expense of inferior
+optimization.
+.Sp
+The default is \fB\-fguess\-branch\-probability\fR at levels
+\&\fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-freorder\-blocks\fR" 4
+.IX Item "-freorder-blocks"
+Reorder basic blocks in the compiled function in order to reduce number of
+taken branches and improve code locality.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
+.IP "\fB\-freorder\-functions\fR" 4
+.IX Item "-freorder-functions"
+Reorder basic blocks in the compiled function in order to reduce number of
+taken branches and improve code locality. This is implemented by using special
+subsections \f(CW\*(C`.text.hot\*(C'\fR for most frequently executed functions and
+\&\f(CW\*(C`.text.unlikely\*(C'\fR for unlikely executed functions.  Reordering is done by
+the linker so object file format must support named sections and linker must
+place them in a reasonable way.
+.Sp
+Also profile feedback must be available in to make this option effective.  See
+\&\fB\-fprofile\-arcs\fR for details.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fstrict\-aliasing\fR" 4
+.IX Item "-fstrict-aliasing"
+Allows the compiler to assume the strictest aliasing rules applicable to
+the language being compiled.  For C (and \*(C+), this activates
+optimizations based on the type of expressions.  In particular, an
+object of one type is assumed never to reside at the same address as an
+object of a different type, unless the types are almost the same.  For
+example, an \f(CW\*(C`unsigned int\*(C'\fR can alias an \f(CW\*(C`int\*(C'\fR, but not a
+\&\f(CW\*(C`void*\*(C'\fR or a \f(CW\*(C`double\*(C'\fR.  A character type may alias any other
+type.
+.Sp
+Pay special attention to code like this:
+.Sp
+.Vb 4
+\&        union a_union {
+\&          int i;
+\&          double d;
+\&        };
+.Ve
+.Sp
+.Vb 5
+\&        int f() {
+\&          a_union t;
+\&          t.d = 3.0;
+\&          return t.i;
+\&        }
+.Ve
+.Sp
+The practice of reading from a different union member than the one most
+recently written to (called ``type\-punning'') is common.  Even with
+\&\fB\-fstrict\-aliasing\fR, type-punning is allowed, provided the memory
+is accessed through the union type.  So, the code above will work as
+expected.  However, this code might not:
+.Sp
+.Vb 7
+\&        int f() {
+\&          a_union t;
+\&          int* ip;
+\&          t.d = 3.0;
+\&          ip = &t.i;
+\&          return *ip;
+\&        }
+.Ve
+.Sp
+Every language that wishes to perform language-specific alias analysis
+should define a function that computes, given an \f(CW\*(C`tree\*(C'\fR
+node, an alias set for the node.  Nodes in different alias sets are not
+allowed to alias.  For an example, see the C front-end function
+\&\f(CW\*(C`c_get_alias_set\*(C'\fR.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-falign\-functions\fR" 4
+.IX Item "-falign-functions"
+.PD 0
+.IP "\fB\-falign\-functions=\fR\fIn\fR" 4
+.IX Item "-falign-functions=n"
+.PD
+Align the start of functions to the next power-of-two greater than
+\&\fIn\fR, skipping up to \fIn\fR bytes.  For instance,
+\&\fB\-falign\-functions=32\fR aligns functions to the next 32\-byte
+boundary, but \fB\-falign\-functions=24\fR would align to the next
+32\-byte boundary only if this can be done by skipping 23 bytes or less.
+.Sp
+\&\fB\-fno\-align\-functions\fR and \fB\-falign\-functions=1\fR are
+equivalent and mean that functions will not be aligned.
+.Sp
+Some assemblers only support this flag when \fIn\fR is a power of two;
+in that case, it is rounded up.
+.Sp
+If \fIn\fR is not specified or is zero, use a machine-dependent default.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
+.IP "\fB\-falign\-labels\fR" 4
+.IX Item "-falign-labels"
+.PD 0
+.IP "\fB\-falign\-labels=\fR\fIn\fR" 4
+.IX Item "-falign-labels=n"
+.PD
+Align all branch targets to a power-of-two boundary, skipping up to
+\&\fIn\fR bytes like \fB\-falign\-functions\fR.  This option can easily
+make code slower, because it must insert dummy operations for when the
+branch target is reached in the usual flow of the code.
+.Sp
+\&\fB\-fno\-align\-labels\fR and \fB\-falign\-labels=1\fR are
+equivalent and mean that labels will not be aligned.
+.Sp
+If \fB\-falign\-loops\fR or \fB\-falign\-jumps\fR are applicable and
+are greater than this value, then their values are used instead.
+.Sp
+If \fIn\fR is not specified or is zero, use a machine-dependent default
+which is very likely to be \fB1\fR, meaning no alignment.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
+.IP "\fB\-falign\-loops\fR" 4
+.IX Item "-falign-loops"
+.PD 0
+.IP "\fB\-falign\-loops=\fR\fIn\fR" 4
+.IX Item "-falign-loops=n"
+.PD
+Align loops to a power-of-two boundary, skipping up to \fIn\fR bytes
+like \fB\-falign\-functions\fR.  The hope is that the loop will be
+executed many times, which will make up for any execution of the dummy
+operations.
+.Sp
+\&\fB\-fno\-align\-loops\fR and \fB\-falign\-loops=1\fR are
+equivalent and mean that loops will not be aligned.
+.Sp
+If \fIn\fR is not specified or is zero, use a machine-dependent default.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
+.IP "\fB\-falign\-jumps\fR" 4
+.IX Item "-falign-jumps"
+.PD 0
+.IP "\fB\-falign\-jumps=\fR\fIn\fR" 4
+.IX Item "-falign-jumps=n"
+.PD
+Align branch targets to a power-of-two boundary, for branch targets
+where the targets can only be reached by jumping, skipping up to \fIn\fR
+bytes like \fB\-falign\-functions\fR.  In this case, no dummy operations
+need be executed.
+.Sp
+\&\fB\-fno\-align\-jumps\fR and \fB\-falign\-jumps=1\fR are
+equivalent and mean that loops will not be aligned.
+.Sp
+If \fIn\fR is not specified or is zero, use a machine-dependent default.
+.Sp
+Enabled at levels \fB\-O2\fR, \fB\-O3\fR.
+.IP "\fB\-frename\-registers\fR" 4
+.IX Item "-frename-registers"
+Attempt to avoid false dependencies in scheduled code by making use
+of registers left over after register allocation.  This optimization
+will most benefit processors with lots of registers.  It can, however,
+make debugging impossible, since variables will no longer stay in
+a ``home register''.
+.IP "\fB\-fweb\fR" 4
+.IX Item "-fweb"
+Constructs webs as commonly used for register allocation purposes and assign
+each web individual pseudo register.  This allows the register allocation pass
+to operate on pseudos directly, but also strengthens several other optimization
+passes, such as \s-1CSE\s0, loop optimizer and trivial dead code remover.  It can,
+however, make debugging impossible, since variables will no longer stay in a
+``home register''.
+.Sp
+Enabled at levels \fB\-O3\fR.
+.IP "\fB\-fno\-cprop\-registers\fR" 4
+.IX Item "-fno-cprop-registers"
+After register allocation and post-register allocation instruction splitting,
+we perform a copy-propagation pass to try to reduce scheduling dependencies
+and occasionally eliminate the copy.
+.Sp
+Disabled at levels \fB\-O\fR, \fB\-O2\fR, \fB\-O3\fR, \fB\-Os\fR.
+.IP "\fB\-fprofile\-generate\fR" 4
+.IX Item "-fprofile-generate"
+Enable options usually used for instrumenting application to produce
+profile useful for later recompilation with profile feedback based
+optimization.  You must use \f(CW\*(C`\-fprofile\-generate\*(C'\fR both when
+compiling and when linking your program.
+.Sp
+The following options are enabled: \f(CW\*(C`\-fprofile\-arcs\*(C'\fR, \f(CW\*(C`\-fprofile\-values\*(C'\fR, \f(CW\*(C`\-fvpt\*(C'\fR.
+.IP "\fB\-fprofile\-use\fR" 4
+.IX Item "-fprofile-use"
+Enable profile feedback directed optimizations, and optimizations
+generally profitable only with profile feedback available.
+.Sp
+The following options are enabled: \f(CW\*(C`\-fbranch\-probabilities\*(C'\fR,
+\&\f(CW\*(C`\-fvpt\*(C'\fR, \f(CW\*(C`\-funroll\-loops\*(C'\fR, \f(CW\*(C`\-fpeel\-loops\*(C'\fR, \f(CW\*(C`\-ftracer\*(C'\fR.
+.PP
+The following options control compiler behavior regarding floating
+point arithmetic.  These options trade off between speed and
+correctness.  All must be specifically enabled.
+.IP "\fB\-ffloat\-store\fR" 4
+.IX Item "-ffloat-store"
+Do not store floating point variables in registers, and inhibit other
+options that might change whether a floating point value is taken from a
+register or memory.
+.Sp
+This option prevents undesirable excess precision on machines such as
+the 68000 where the floating registers (of the 68881) keep more
+precision than a \f(CW\*(C`double\*(C'\fR is supposed to have.  Similarly for the
+x86 architecture.  For most programs, the excess precision does only
+good, but a few programs rely on the precise definition of \s-1IEEE\s0 floating
+point.  Use \fB\-ffloat\-store\fR for such programs, after modifying
+them to store all pertinent intermediate computations into variables.
+.IP "\fB\-ffast\-math\fR" 4
+.IX Item "-ffast-math"
+Sets \fB\-fno\-math\-errno\fR, \fB\-funsafe\-math\-optimizations\fR, \fB\-fno\-trapping\-math\fR, \fB\-ffinite\-math\-only\fR,
+\&\fB\-fno\-rounding\-math\fR and \fB\-fno\-signaling\-nans\fR.
+.Sp
+This option causes the preprocessor macro \f(CW\*(C`_\|_FAST_MATH_\|_\*(C'\fR to be defined.
+.Sp
+This option should never be turned on by any \fB\-O\fR option since
+it can result in incorrect output for programs which depend on
+an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
+math functions.
+.IP "\fB\-fno\-math\-errno\fR" 4
+.IX Item "-fno-math-errno"
+Do not set \s-1ERRNO\s0 after calling math functions that are executed
+with a single instruction, e.g., sqrt.  A program that relies on
+\&\s-1IEEE\s0 exceptions for math error handling may want to use this flag
+for speed while maintaining \s-1IEEE\s0 arithmetic compatibility.
+.Sp
+This option should never be turned on by any \fB\-O\fR option since
+it can result in incorrect output for programs which depend on
+an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
+math functions.
+.Sp
+The default is \fB\-fmath\-errno\fR.
+.IP "\fB\-funsafe\-math\-optimizations\fR" 4
+.IX Item "-funsafe-math-optimizations"
+Allow optimizations for floating-point arithmetic that (a) assume
+that arguments and results are valid and (b) may violate \s-1IEEE\s0 or
+\&\s-1ANSI\s0 standards.  When used at link\-time, it may include libraries
+or startup files that change the default \s-1FPU\s0 control word or other
+similar optimizations.
+.Sp
+This option should never be turned on by any \fB\-O\fR option since
+it can result in incorrect output for programs which depend on
+an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
+math functions.
+.Sp
+The default is \fB\-fno\-unsafe\-math\-optimizations\fR.
+.IP "\fB\-ffinite\-math\-only\fR" 4
+.IX Item "-ffinite-math-only"
+Allow optimizations for floating-point arithmetic that assume
+that arguments and results are not NaNs or +\-Infs.
+.Sp
+This option should never be turned on by any \fB\-O\fR option since
+it can result in incorrect output for programs which depend on
+an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications.
+.Sp
+The default is \fB\-fno\-finite\-math\-only\fR.
+.IP "\fB\-fno\-trapping\-math\fR" 4
+.IX Item "-fno-trapping-math"
+Compile code assuming that floating-point operations cannot generate
+user-visible traps.  These traps include division by zero, overflow,
+underflow, inexact result and invalid operation.  This option implies
+\&\fB\-fno\-signaling\-nans\fR.  Setting this option may allow faster
+code if one relies on ``non\-stop'' \s-1IEEE\s0 arithmetic, for example.
+.Sp
+This option should never be turned on by any \fB\-O\fR option since
+it can result in incorrect output for programs which depend on
+an exact implementation of \s-1IEEE\s0 or \s-1ISO\s0 rules/specifications for
+math functions.
+.Sp
+The default is \fB\-ftrapping\-math\fR.
+.IP "\fB\-frounding\-math\fR" 4
+.IX Item "-frounding-math"
+Disable transformations and optimizations that assume default floating
+point rounding behavior.  This is round-to-zero for all floating point
+to integer conversions, and round-to-nearest for all other arithmetic
+truncations.  This option should be specified for programs that change
+the \s-1FP\s0 rounding mode dynamically, or that may be executed with a
+non-default rounding mode.  This option disables constant folding of
+floating point expressions at compile-time (which may be affected by
+rounding mode) and arithmetic transformations that are unsafe in the
+presence of sign-dependent rounding modes.
+.Sp
+The default is \fB\-fno\-rounding\-math\fR.
+.Sp
+This option is experimental and does not currently guarantee to
+disable all \s-1GCC\s0 optimizations that are affected by rounding mode.
+Future versions of \s-1GCC\s0 may provide finer control of this setting
+using C99's \f(CW\*(C`FENV_ACCESS\*(C'\fR pragma.  This command line option
+will be used to specify the default state for \f(CW\*(C`FENV_ACCESS\*(C'\fR.
+.IP "\fB\-fsignaling\-nans\fR" 4
+.IX Item "-fsignaling-nans"
+Compile code assuming that \s-1IEEE\s0 signaling NaNs may generate user-visible
+traps during floating-point operations.  Setting this option disables
+optimizations that may change the number of exceptions visible with
+signaling NaNs.  This option implies \fB\-ftrapping\-math\fR.
+.Sp
+This option causes the preprocessor macro \f(CW\*(C`_\|_SUPPORT_SNAN_\|_\*(C'\fR to
+be defined.
+.Sp
+The default is \fB\-fno\-signaling\-nans\fR.
+.Sp
+This option is experimental and does not currently guarantee to
+disable all \s-1GCC\s0 optimizations that affect signaling NaN behavior.
+.IP "\fB\-fsingle\-precision\-constant\fR" 4
+.IX Item "-fsingle-precision-constant"
+Treat floating point constant as single precision constant instead of
+implicitly converting it to double precision constant.
+.PP
+The following options control optimizations that may improve
+performance, but are not enabled by any \fB\-O\fR options.  This
+section includes experimental options that may produce broken code.
+.IP "\fB\-fbranch\-probabilities\fR" 4
+.IX Item "-fbranch-probabilities"
+After running a program compiled with \fB\-fprofile\-arcs\fR, you can compile it a second time using
+\&\fB\-fbranch\-probabilities\fR, to improve optimizations based on
+the number of times each branch was taken.  When the program
+compiled with \fB\-fprofile\-arcs\fR exits it saves arc execution
+counts to a file called \fI\fIsourcename\fI.gcda\fR for each source
+file  The information in this data file is very dependent on the
+structure of the generated code, so you must use the same source code
+and the same optimization options for both compilations.
+.Sp
+With \fB\-fbranch\-probabilities\fR, \s-1GCC\s0 puts a
+\&\fB\s-1REG_BR_PROB\s0\fR note on each \fB\s-1JUMP_INSN\s0\fR and \fB\s-1CALL_INSN\s0\fR.
+These can be used to improve optimization.  Currently, they are only
+used in one place: in \fIreorg.c\fR, instead of guessing which path a
+branch is mostly to take, the \fB\s-1REG_BR_PROB\s0\fR values are used to
+exactly determine which path is taken more often.
+.IP "\fB\-fprofile\-values\fR" 4
+.IX Item "-fprofile-values"
+If combined with \fB\-fprofile\-arcs\fR, it adds code so that some
+data about values of expressions in the program is gathered.
+.Sp
+With \fB\-fbranch\-probabilities\fR, it reads back the data gathered
+from profiling values of expressions and adds \fB\s-1REG_VALUE_PROFILE\s0\fR
+notes to instructions for their later usage in optimizations.
+.IP "\fB\-fvpt\fR" 4
+.IX Item "-fvpt"
+If combined with \fB\-fprofile\-arcs\fR, it instructs the compiler to add
+a code to gather information about values of expressions.
+.Sp
+With \fB\-fbranch\-probabilities\fR, it reads back the data gathered
+and actually performs the optimizations based on them.
+Currently the optimizations include specialization of division operation
+using the knowledge about the value of the denominator.
+.IP "\fB\-fnew\-ra\fR" 4
+.IX Item "-fnew-ra"
+Use a graph coloring register allocator.  Currently this option is meant
+for testing, so we are interested to hear about miscompilations with
+\&\fB\-fnew\-ra\fR.
+.IP "\fB\-ftracer\fR" 4
+.IX Item "-ftracer"
+Perform tail duplication to enlarge superblock size. This transformation
+simplifies the control flow of the function allowing other optimizations to do
+better job.
+.IP "\fB\-funit\-at\-a\-time\fR" 4
+.IX Item "-funit-at-a-time"
+Parse the whole compilation unit before starting to produce code.
+This allows some extra optimizations to take place but consumes more
+memory.
+.IP "\fB\-funroll\-loops\fR" 4
+.IX Item "-funroll-loops"
+Unroll loops whose number of iterations can be determined at compile time or
+upon entry to the loop.  \fB\-funroll\-loops\fR implies
+\&\fB\-frerun\-cse\-after\-loop\fR.  It also turns on complete loop peeling
+(i.e. complete removal of loops with small constant number of iterations).
+This option makes code larger, and may or may not make it run faster.
+.IP "\fB\-funroll\-all\-loops\fR" 4
+.IX Item "-funroll-all-loops"
+Unroll all loops, even if their number of iterations is uncertain when
+the loop is entered.  This usually makes programs run more slowly.
+\&\fB\-funroll\-all\-loops\fR implies the same options as
+\&\fB\-funroll\-loops\fR.
+.IP "\fB\-fpeel\-loops\fR" 4
+.IX Item "-fpeel-loops"
+Peels the loops for that there is enough information that they do not
+roll much (from profile feedback).  It also turns on complete loop peeling
+(i.e. complete removal of loops with small constant number of iterations).
+.IP "\fB\-funswitch\-loops\fR" 4
+.IX Item "-funswitch-loops"
+Move branches with loop invariant conditions out of the loop, with duplicates
+of the loop on both branches (modified according to result of the condition).
+.IP "\fB\-fold\-unroll\-loops\fR" 4
+.IX Item "-fold-unroll-loops"
+Unroll loops whose number of iterations can be determined at compile
+time or upon entry to the loop, using the old loop unroller whose loop
+recognition is based on notes from frontend.  \fB\-fold\-unroll\-loops\fR implies
+both \fB\-fstrength\-reduce\fR and \fB\-frerun\-cse\-after\-loop\fR.  This
+option makes code larger, and may or may not make it run faster.
+.IP "\fB\-fold\-unroll\-all\-loops\fR" 4
+.IX Item "-fold-unroll-all-loops"
+Unroll all loops, even if their number of iterations is uncertain when
+the loop is entered. This is done using the old loop unroller whose loop
+recognition is based on notes from frontend.  This usually makes programs run more slowly.
+\&\fB\-fold\-unroll\-all\-loops\fR implies the same options as
+\&\fB\-fold\-unroll\-loops\fR.
+.IP "\fB\-funswitch\-loops\fR" 4
+.IX Item "-funswitch-loops"
+Move branches with loop invariant conditions out of the loop, with duplicates
+of the loop on both branches (modified according to result of the condition).
+.IP "\fB\-funswitch\-loops\fR" 4
+.IX Item "-funswitch-loops"
+Move branches with loop invariant conditions out of the loop, with duplicates
+of the loop on both branches (modified according to result of the condition).
+.IP "\fB\-fprefetch\-loop\-arrays\fR" 4
+.IX Item "-fprefetch-loop-arrays"
+If supported by the target machine, generate instructions to prefetch
+memory to improve the performance of loops that access large arrays.
+.Sp
+Disabled at level \fB\-Os\fR.
+.IP "\fB\-ffunction\-sections\fR" 4
+.IX Item "-ffunction-sections"
+.PD 0
+.IP "\fB\-fdata\-sections\fR" 4
+.IX Item "-fdata-sections"
+.PD
+Place each function or data item into its own section in the output
+file if the target supports arbitrary sections.  The name of the
+function or the name of the data item determines the section's name
+in the output file.
+.Sp
+Use these options on systems where the linker can perform optimizations
+to improve locality of reference in the instruction space.  Most systems
+using the \s-1ELF\s0 object format and \s-1SPARC\s0 processors running Solaris 2 have
+linkers with such optimizations.  \s-1AIX\s0 may have these optimizations in
+the future.
+.Sp
+Only use these options when there are significant benefits from doing
+so.  When you specify these options, the assembler and linker will
+create larger object and executable files and will also be slower.
+You will not be able to use \f(CW\*(C`gprof\*(C'\fR on all systems if you
+specify this option and you may have problems with debugging if
+you specify both this option and \fB\-g\fR.
+.IP "\fB\-fbranch\-target\-load\-optimize\fR" 4
+.IX Item "-fbranch-target-load-optimize"
+Perform branch target register load optimization before prologue / epilogue
+threading.
+The use of target registers can typically be exposed only during reload,
+thus hoisting loads out of loops and doing inter-block scheduling needs
+a separate optimization pass.
+.IP "\fB\-fbranch\-target\-load\-optimize2\fR" 4
+.IX Item "-fbranch-target-load-optimize2"
+Perform branch target register load optimization after prologue / epilogue
+threading.
+.IP "\fB\-\-param\fR \fIname\fR\fB=\fR\fIvalue\fR" 4
+.IX Item "--param name=value"
+In some places, \s-1GCC\s0 uses various constants to control the amount of
+optimization that is done.  For example, \s-1GCC\s0 will not inline functions
+that contain more that a certain number of instructions.  You can
+control some of these constants on the command-line using the
+\&\fB\-\-param\fR option.
+.Sp
+The names of specific parameters, and the meaning of the values, are
+tied to the internals of the compiler, and are subject to change
+without notice in future releases.
+.Sp
+In each case, the \fIvalue\fR is an integer.  The allowable choices for
+\&\fIname\fR are given in the following table:
+.RS 4
+.IP "\fBmax-crossjump-edges\fR" 4
+.IX Item "max-crossjump-edges"
+The maximum number of incoming edges to consider for crossjumping.
+The algorithm used by \fB\-fcrossjumping\fR is O(N^2) in
+the number of edges incoming to each block.  Increasing values mean
+more aggressive optimization, making the compile time increase with
+probably small improvement in executable size.
+.IP "\fBmax-delay-slot-insn-search\fR" 4
+.IX Item "max-delay-slot-insn-search"
+The maximum number of instructions to consider when looking for an
+instruction to fill a delay slot.  If more than this arbitrary number of
+instructions is searched, the time savings from filling the delay slot
+will be minimal so stop searching.  Increasing values mean more
+aggressive optimization, making the compile time increase with probably
+small improvement in executable run time.
+.IP "\fBmax-delay-slot-live-search\fR" 4
+.IX Item "max-delay-slot-live-search"
+When trying to fill delay slots, the maximum number of instructions to
+consider when searching for a block with valid live register
+information.  Increasing this arbitrarily chosen value means more
+aggressive optimization, increasing the compile time.  This parameter
+should be removed when the delay slot code is rewritten to maintain the
+control-flow graph.
+.IP "\fBmax-gcse-memory\fR" 4
+.IX Item "max-gcse-memory"
+The approximate maximum amount of memory that will be allocated in
+order to perform the global common subexpression elimination
+optimization.  If more memory than specified is required, the
+optimization will not be done.
+.IP "\fBmax-gcse-passes\fR" 4
+.IX Item "max-gcse-passes"
+The maximum number of passes of \s-1GCSE\s0 to run.
+.IP "\fBmax-pending-list-length\fR" 4
+.IX Item "max-pending-list-length"
+The maximum number of pending dependencies scheduling will allow
+before flushing the current state and starting over.  Large functions
+with few branches or calls can create excessively large lists which
+needlessly consume memory and resources.
+.IP "\fBmax-inline-insns-single\fR" 4
+.IX Item "max-inline-insns-single"
+Several parameters control the tree inliner used in gcc.
+This number sets the maximum number of instructions (counted in \s-1GCC\s0's
+internal representation) in a single function that the tree inliner
+will consider for inlining.  This only affects functions declared
+inline and methods implemented in a class declaration (\*(C+).
+The default value is 500.
+.IP "\fBmax-inline-insns-auto\fR" 4
+.IX Item "max-inline-insns-auto"
+When you use \fB\-finline\-functions\fR (included in \fB\-O3\fR),
+a lot of functions that would otherwise not be considered for inlining
+by the compiler will be investigated.  To those functions, a different
+(more restrictive) limit compared to functions declared inline can
+be applied.
+The default value is 100.
+.IP "\fBlarge-function-insns\fR" 4
+.IX Item "large-function-insns"
+The limit specifying really large functions.  For functions greater than this
+limit inlining is constrained by \fB\-\-param large-function-growth\fR.
+This parameter is useful primarily to avoid extreme compilation time caused by non-linear
+algorithms used by the backend.
+This parameter is ignored when \fB\-funit\-at\-a\-time\fR is not used.
+The default value is 3000.
+.IP "\fBlarge-function-growth\fR" 4
+.IX Item "large-function-growth"
+Specifies maximal growth of large function caused by inlining in percents.
+This parameter is ignored when \fB\-funit\-at\-a\-time\fR is not used.
+The default value is 200.
+.IP "\fBinline-unit-growth\fR" 4
+.IX Item "inline-unit-growth"
+Specifies maximal overall growth of the compilation unit caused by inlining.
+This parameter is ignored when \fB\-funit\-at\-a\-time\fR is not used.
+The default value is 150.
+.IP "\fBmax-inline-insns-rtl\fR" 4
+.IX Item "max-inline-insns-rtl"
+For languages that use the \s-1RTL\s0 inliner (this happens at a later stage
+than tree inlining), you can set the maximum allowable size (counted
+in \s-1RTL\s0 instructions) for the \s-1RTL\s0 inliner with this parameter.
+The default value is 600.
+.IP "\fBmax-unrolled-insns\fR" 4
+.IX Item "max-unrolled-insns"
+The maximum number of instructions that a loop should have if that loop
+is unrolled, and if the loop is unrolled, it determines how many times
+the loop code is unrolled.
+.IP "\fBmax-average-unrolled-insns\fR" 4
+.IX Item "max-average-unrolled-insns"
+The maximum number of instructions biased by probabilities of their execution
+that a loop should have if that loop is unrolled, and if the loop is unrolled,
+it determines how many times the loop code is unrolled.
+.IP "\fBmax-unroll-times\fR" 4
+.IX Item "max-unroll-times"
+The maximum number of unrollings of a single loop.
+.IP "\fBmax-peeled-insns\fR" 4
+.IX Item "max-peeled-insns"
+The maximum number of instructions that a loop should have if that loop
+is peeled, and if the loop is peeled, it determines how many times
+the loop code is peeled.
+.IP "\fBmax-peel-times\fR" 4
+.IX Item "max-peel-times"
+The maximum number of peelings of a single loop.
+.IP "\fBmax-completely-peeled-insns\fR" 4
+.IX Item "max-completely-peeled-insns"
+The maximum number of insns of a completely peeled loop.
+.IP "\fBmax-completely-peel-times\fR" 4
+.IX Item "max-completely-peel-times"
+The maximum number of iterations of a loop to be suitable for complete peeling.
+.IP "\fBmax-unswitch-insns\fR" 4
+.IX Item "max-unswitch-insns"
+The maximum number of insns of an unswitched loop.
+.IP "\fBmax-unswitch-level\fR" 4
+.IX Item "max-unswitch-level"
+The maximum number of branches unswitched in a single loop.
+.IP "\fBhot-bb-count-fraction\fR" 4
+.IX Item "hot-bb-count-fraction"
+Select fraction of the maximal count of repetitions of basic block in program
+given basic block needs to have to be considered hot.
+.IP "\fBhot-bb-frequency-fraction\fR" 4
+.IX Item "hot-bb-frequency-fraction"
+Select fraction of the maximal frequency of executions of basic block in
+function given basic block needs to have to be considered hot
+.IP "\fBtracer-dynamic-coverage\fR" 4
+.IX Item "tracer-dynamic-coverage"
+.PD 0
+.IP "\fBtracer-dynamic-coverage-feedback\fR" 4
+.IX Item "tracer-dynamic-coverage-feedback"
+.PD
+This value is used to limit superblock formation once the given percentage of
+executed instructions is covered.  This limits unnecessary code size
+expansion.
+.Sp
+The \fBtracer-dynamic-coverage-feedback\fR is used only when profile
+feedback is available.  The real profiles (as opposed to statically estimated
+ones) are much less balanced allowing the threshold to be larger value.
+.IP "\fBtracer-max-code-growth\fR" 4
+.IX Item "tracer-max-code-growth"
+Stop tail duplication once code growth has reached given percentage.  This is
+rather hokey argument, as most of the duplicates will be eliminated later in
+cross jumping, so it may be set to much higher values than is the desired code
+growth.
+.IP "\fBtracer-min-branch-ratio\fR" 4
+.IX Item "tracer-min-branch-ratio"
+Stop reverse growth when the reverse probability of best edge is less than this
+threshold (in percent).
+.IP "\fBtracer-min-branch-ratio\fR" 4
+.IX Item "tracer-min-branch-ratio"
+.PD 0
+.IP "\fBtracer-min-branch-ratio-feedback\fR" 4
+.IX Item "tracer-min-branch-ratio-feedback"
+.PD
+Stop forward growth if the best edge do have probability lower than this
+threshold.
+.Sp
+Similarly to \fBtracer-dynamic-coverage\fR two values are present, one for
+compilation for profile feedback and one for compilation without.  The value
+for compilation with profile feedback needs to be more conservative (higher) in
+order to make tracer effective.
+.IP "\fBmax-cse-path-length\fR" 4
+.IX Item "max-cse-path-length"
+Maximum number of basic blocks on path that cse considers.
+.IP "\fBggc-min-expand\fR" 4
+.IX Item "ggc-min-expand"
+\&\s-1GCC\s0 uses a garbage collector to manage its own memory allocation.  This
+parameter specifies the minimum percentage by which the garbage
+collector's heap should be allowed to expand between collections.
+Tuning this may improve compilation speed; it has no effect on code
+generation.
+.Sp
+The default is 30% + 70% * (\s-1RAM/1GB\s0) with an upper bound of 100% when
+\&\s-1RAM\s0 >= 1GB.  If \f(CW\*(C`getrlimit\*(C'\fR is available, the notion of \*(L"\s-1RAM\s0\*(R" is
+the smallest of actual \s-1RAM\s0, \s-1RLIMIT_RSS\s0, \s-1RLIMIT_DATA\s0 and \s-1RLIMIT_AS\s0.  If
+\&\s-1GCC\s0 is not able to calculate \s-1RAM\s0 on a particular platform, the lower
+bound of 30% is used.  Setting this parameter and
+\&\fBggc-min-heapsize\fR to zero causes a full collection to occur at
+every opportunity.  This is extremely slow, but can be useful for
+debugging.
+.IP "\fBggc-min-heapsize\fR" 4
+.IX Item "ggc-min-heapsize"
+Minimum size of the garbage collector's heap before it begins bothering
+to collect garbage.  The first collection occurs after the heap expands
+by \fBggc-min-expand\fR% beyond \fBggc-min-heapsize\fR.  Again,
+tuning this may improve compilation speed, and has no effect on code
+generation.
+.Sp
+The default is \s-1RAM/8\s0, with a lower bound of 4096 (four megabytes) and an
+upper bound of 131072 (128 megabytes).  If \f(CW\*(C`getrlimit\*(C'\fR is
+available, the notion of \*(L"\s-1RAM\s0\*(R" is the smallest of actual \s-1RAM\s0,
+\&\s-1RLIMIT_RSS\s0, \s-1RLIMIT_DATA\s0 and \s-1RLIMIT_AS\s0.  If \s-1GCC\s0 is not able to calculate
+\&\s-1RAM\s0 on a particular platform, the lower bound is used.  Setting this
+parameter very large effectively disables garbage collection.  Setting
+this parameter and \fBggc-min-expand\fR to zero causes a full
+collection to occur at every opportunity.
+.IP "\fBmax-reload-search-insns\fR" 4
+.IX Item "max-reload-search-insns"
+The maximum number of instruction reload should look backward for equivalent
+register.  Increasing values mean more aggressive optimization, making the
+compile time increase with probably slightly better performance.  The default
+value is 100.
+.IP "\fBmax-cselib-memory-location\fR" 4
+.IX Item "max-cselib-memory-location"
+The maximum number of memory locations cselib should take into acount.
+Increasing values mean more aggressive optimization, making the compile time
+increase with probably slightly better performance.  The default value is 500.
+.IP "\fBreorder-blocks-duplicate\fR" 4
+.IX Item "reorder-blocks-duplicate"
+.PD 0
+.IP "\fBreorder-blocks-duplicate-feedback\fR" 4
+.IX Item "reorder-blocks-duplicate-feedback"
+.PD
+Used by basic block reordering pass to decide whether to use unconditional
+branch or duplicate the code on its destination.  Code is duplicated when its
+estimated size is smaller than this value multiplied by the estimated size of
+unconditional jump in the hot spots of the program.
+.Sp
+The \fBreorder-block-duplicate-feedback\fR is used only when profile
+feedback is available and may be set to higher values than
+\&\fBreorder-block-duplicate\fR since information about the hot spots is more
+accurate.
+.RE
+.RS 4
+.RE
+.Sh "Options Controlling the Preprocessor"
+.IX Subsection "Options Controlling the Preprocessor"
+These options control the C preprocessor, which is run on each C source
+file before actual compilation.
+.PP
+If you use the \fB\-E\fR option, nothing is done except preprocessing.
+Some of these options make sense only together with \fB\-E\fR because
+they cause the preprocessor output to be unsuitable for actual
+compilation.
+.Sp
+.RS 4
+You can use \fB\-Wp,\fR\fIoption\fR to bypass the compiler driver
+and pass \fIoption\fR directly through to the preprocessor.  If
+\&\fIoption\fR contains commas, it is split into multiple options at the
+commas.  However, many options are modified, translated or interpreted
+by the compiler driver before being passed to the preprocessor, and
+\&\fB\-Wp\fR forcibly bypasses this phase.  The preprocessor's direct
+interface is undocumented and subject to change, so whenever possible
+you should avoid using \fB\-Wp\fR and let the driver handle the
+options instead.
+.RE
+.IP "\fB\-Xpreprocessor\fR \fIoption\fR" 4
+.IX Item "-Xpreprocessor option"
+Pass \fIoption\fR as an option to the preprocessor.  You can use this to
+supply system-specific preprocessor options which \s-1GCC\s0 does not know how to
+recognize.
+.Sp
+If you want to pass an option that takes an argument, you must use
+\&\fB\-Xpreprocessor\fR twice, once for the option and once for the argument.
+.IP "\fB\-D\fR \fIname\fR" 4
+.IX Item "-D name"
+Predefine \fIname\fR as a macro, with definition \f(CW1\fR.
+.IP "\fB\-D\fR \fIname\fR\fB=\fR\fIdefinition\fR" 4
+.IX Item "-D name=definition"
+Predefine \fIname\fR as a macro, with definition \fIdefinition\fR.
+The contents of \fIdefinition\fR are tokenized and processed as if
+they appeared during translation phase three in a \fB#define\fR
+directive.  In particular, the definition will be truncated by
+embedded newline characters.
+.Sp
+If you are invoking the preprocessor from a shell or shell-like
+program you may need to use the shell's quoting syntax to protect
+characters such as spaces that have a meaning in the shell syntax.
+.Sp
+If you wish to define a function-like macro on the command line, write
+its argument list with surrounding parentheses before the equals sign
+(if any).  Parentheses are meaningful to most shells, so you will need
+to quote the option.  With \fBsh\fR and \fBcsh\fR,
+\&\fB\-D'\fR\fIname\fR\fB(\fR\fIargs...\fR\fB)=\fR\fIdefinition\fR\fB'\fR works.
+.Sp
+\&\fB\-D\fR and \fB\-U\fR options are processed in the order they
+are given on the command line.  All \fB\-imacros\fR \fIfile\fR and
+\&\fB\-include\fR \fIfile\fR options are processed after all
+\&\fB\-D\fR and \fB\-U\fR options.
+.IP "\fB\-U\fR \fIname\fR" 4
+.IX Item "-U name"
+Cancel any previous definition of \fIname\fR, either built in or
+provided with a \fB\-D\fR option.
+.IP "\fB\-undef\fR" 4
+.IX Item "-undef"
+Do not predefine any system-specific or GCC-specific macros.  The
+standard predefined macros remain defined.
+.IP "\fB\-I\fR \fIdir\fR" 4
+.IX Item "-I dir"
+Add the directory \fIdir\fR to the list of directories to be searched
+for header files.
+Directories named by \fB\-I\fR are searched before the standard
+system include directories.  If the directory \fIdir\fR is a standard
+system include directory, the option is ignored to ensure that the
+default search order for system directories and the special treatment
+of system headers are not defeated
+\&.
+.IP "\fB\-o\fR \fIfile\fR" 4
+.IX Item "-o file"
+Write output to \fIfile\fR.  This is the same as specifying \fIfile\fR
+as the second non-option argument to \fBcpp\fR.  \fBgcc\fR has a
+different interpretation of a second non-option argument, so you must
+use \fB\-o\fR to specify the output file.
+.IP "\fB\-Wall\fR" 4
+.IX Item "-Wall"
+Turns on all optional warnings which are desirable for normal code.
+At present this is \fB\-Wcomment\fR, \fB\-Wtrigraphs\fR,
+\&\fB\-Wmultichar\fR and a warning about integer promotion causing a
+change of sign in \f(CW\*(C`#if\*(C'\fR expressions.  Note that many of the
+preprocessor's warnings are on by default and have no options to
+control them.
+.IP "\fB\-Wcomment\fR" 4
+.IX Item "-Wcomment"
+.PD 0
+.IP "\fB\-Wcomments\fR" 4
+.IX Item "-Wcomments"
+.PD
+Warn whenever a comment-start sequence \fB/*\fR appears in a \fB/*\fR
+comment, or whenever a backslash-newline appears in a \fB//\fR comment.
+(Both forms have the same effect.)
+.IP "\fB\-Wtrigraphs\fR" 4
+.IX Item "-Wtrigraphs"
+@anchor{Wtrigraphs}
+Most trigraphs in comments cannot affect the meaning of the program.
+However, a trigraph that would form an escaped newline (\fB??/\fR at
+the end of a line) can, by changing where the comment begins or ends.
+Therefore, only trigraphs that would form escaped newlines produce
+warnings inside a comment.
+.Sp
+This option is implied by \fB\-Wall\fR.  If \fB\-Wall\fR is not
+given, this option is still enabled unless trigraphs are enabled.  To
+get trigraph conversion without warnings, but get the other
+\&\fB\-Wall\fR warnings, use \fB\-trigraphs \-Wall \-Wno\-trigraphs\fR.
+.IP "\fB\-Wtraditional\fR" 4
+.IX Item "-Wtraditional"
+Warn about certain constructs that behave differently in traditional and
+\&\s-1ISO\s0 C.  Also warn about \s-1ISO\s0 C constructs that have no traditional C
+equivalent, and problematic constructs which should be avoided.
+.IP "\fB\-Wimport\fR" 4
+.IX Item "-Wimport"
+Warn the first time \fB#import\fR is used.
+.IP "\fB\-Wundef\fR" 4
+.IX Item "-Wundef"
+Warn whenever an identifier which is not a macro is encountered in an
+\&\fB#if\fR directive, outside of \fBdefined\fR.  Such identifiers are
+replaced with zero.
+.IP "\fB\-Wunused\-macros\fR" 4
+.IX Item "-Wunused-macros"
+Warn about macros defined in the main file that are unused.  A macro
+is \fIused\fR if it is expanded or tested for existence at least once.
+The preprocessor will also warn if the macro has not been used at the
+time it is redefined or undefined.
+.Sp
+Built-in macros, macros defined on the command line, and macros
+defined in include files are not warned about.
+.Sp
+\&\fBNote:\fR If a macro is actually used, but only used in skipped
+conditional blocks, then \s-1CPP\s0 will report it as unused.  To avoid the
+warning in such a case, you might improve the scope of the macro's
+definition by, for example, moving it into the first skipped block.
+Alternatively, you could provide a dummy use with something like:
+.Sp
+.Vb 2
+\&        #if defined the_macro_causing_the_warning
+\&        #endif
+.Ve
+.IP "\fB\-Wendif\-labels\fR" 4
+.IX Item "-Wendif-labels"
+Warn whenever an \fB#else\fR or an \fB#endif\fR are followed by text.
+This usually happens in code of the form
+.Sp
+.Vb 5
+\&        #if FOO
+\&        ...
+\&        #else FOO
+\&        ...
+\&        #endif FOO
+.Ve
+.Sp
+The second and third \f(CW\*(C`FOO\*(C'\fR should be in comments, but often are not
+in older programs.  This warning is on by default.
+.IP "\fB\-Werror\fR" 4
+.IX Item "-Werror"
+Make all warnings into hard errors.  Source code which triggers warnings
+will be rejected.
+.IP "\fB\-Wsystem\-headers\fR" 4
+.IX Item "-Wsystem-headers"
+Issue warnings for code in system headers.  These are normally unhelpful
+in finding bugs in your own code, therefore suppressed.  If you are
+responsible for the system library, you may want to see them.
+.IP "\fB\-w\fR" 4
+.IX Item "-w"
+Suppress all warnings, including those which \s-1GNU\s0 \s-1CPP\s0 issues by default.
+.IP "\fB\-pedantic\fR" 4
+.IX Item "-pedantic"
+Issue all the mandatory diagnostics listed in the C standard.  Some of
+them are left out by default, since they trigger frequently on harmless
+code.
+.IP "\fB\-pedantic\-errors\fR" 4
+.IX Item "-pedantic-errors"
+Issue all the mandatory diagnostics, and make all mandatory diagnostics
+into errors.  This includes mandatory diagnostics that \s-1GCC\s0 issues
+without \fB\-pedantic\fR but treats as warnings.
+.IP "\fB\-M\fR" 4
+.IX Item "-M"
+Instead of outputting the result of preprocessing, output a rule
+suitable for \fBmake\fR describing the dependencies of the main
+source file.  The preprocessor outputs one \fBmake\fR rule containing
+the object file name for that source file, a colon, and the names of all
+the included files, including those coming from \fB\-include\fR or
+\&\fB\-imacros\fR command line options.
+.Sp
+Unless specified explicitly (with \fB\-MT\fR or \fB\-MQ\fR), the
+object file name consists of the basename of the source file with any
+suffix replaced with object file suffix.  If there are many included
+files then the rule is split into several lines using \fB\e\fR\-newline.
+The rule has no commands.
+.Sp
+This option does not suppress the preprocessor's debug output, such as
+\&\fB\-dM\fR.  To avoid mixing such debug output with the dependency
+rules you should explicitly specify the dependency output file with
+\&\fB\-MF\fR, or use an environment variable like
+\&\fB\s-1DEPENDENCIES_OUTPUT\s0\fR.  Debug output
+will still be sent to the regular output stream as normal.
+.Sp
+Passing \fB\-M\fR to the driver implies \fB\-E\fR, and suppresses
+warnings with an implicit \fB\-w\fR.
+.IP "\fB\-MM\fR" 4
+.IX Item "-MM"
+Like \fB\-M\fR but do not mention header files that are found in
+system header directories, nor header files that are included,
+directly or indirectly, from such a header.
+.Sp
+This implies that the choice of angle brackets or double quotes in an
+\&\fB#include\fR directive does not in itself determine whether that
+header will appear in \fB\-MM\fR dependency output.  This is a
+slight change in semantics from \s-1GCC\s0 versions 3.0 and earlier.
+.Sp
+@anchor{dashMF}
+.IP "\fB\-MF\fR \fIfile\fR" 4
+.IX Item "-MF file"
+When used with \fB\-M\fR or \fB\-MM\fR, specifies a
+file to write the dependencies to.  If no \fB\-MF\fR switch is given
+the preprocessor sends the rules to the same place it would have sent
+preprocessed output.
+.Sp
+When used with the driver options \fB\-MD\fR or \fB\-MMD\fR,
+\&\fB\-MF\fR overrides the default dependency output file.
+.IP "\fB\-MG\fR" 4
+.IX Item "-MG"
+In conjunction with an option such as \fB\-M\fR requesting
+dependency generation, \fB\-MG\fR assumes missing header files are
+generated files and adds them to the dependency list without raising
+an error.  The dependency filename is taken directly from the
+\&\f(CW\*(C`#include\*(C'\fR directive without prepending any path.  \fB\-MG\fR
+also suppresses preprocessed output, as a missing header file renders
+this useless.
+.Sp
+This feature is used in automatic updating of makefiles.
+.IP "\fB\-MP\fR" 4
+.IX Item "-MP"
+This option instructs \s-1CPP\s0 to add a phony target for each dependency
+other than the main file, causing each to depend on nothing.  These
+dummy rules work around errors \fBmake\fR gives if you remove header
+files without updating the \fIMakefile\fR to match.
+.Sp
+This is typical output:
+.Sp
+.Vb 1
+\&        test.o: test.c test.h
+.Ve
+.Sp
+.Vb 1
+\&        test.h:
+.Ve
+.IP "\fB\-MT\fR \fItarget\fR" 4
+.IX Item "-MT target"
+Change the target of the rule emitted by dependency generation.  By
+default \s-1CPP\s0 takes the name of the main input file, including any path,
+deletes any file suffix such as \fB.c\fR, and appends the platform's
+usual object suffix.  The result is the target.
+.Sp
+An \fB\-MT\fR option will set the target to be exactly the string you
+specify.  If you want multiple targets, you can specify them as a single
+argument to \fB\-MT\fR, or use multiple \fB\-MT\fR options.
+.Sp
+For example, \fB\-MT\ '$(objpfx)foo.o'\fR might give
+.Sp
+.Vb 1
+\&        $(objpfx)foo.o: foo.c
+.Ve
+.IP "\fB\-MQ\fR \fItarget\fR" 4
+.IX Item "-MQ target"
+Same as \fB\-MT\fR, but it quotes any characters which are special to
+Make.  \fB\-MQ\ '$(objpfx)foo.o'\fR gives
+.Sp
+.Vb 1
+\&        $$(objpfx)foo.o: foo.c
+.Ve
+.Sp
+The default target is automatically quoted, as if it were given with
+\&\fB\-MQ\fR.
+.IP "\fB\-MD\fR" 4
+.IX Item "-MD"
+\&\fB\-MD\fR is equivalent to \fB\-M \-MF\fR \fIfile\fR, except that
+\&\fB\-E\fR is not implied.  The driver determines \fIfile\fR based on
+whether an \fB\-o\fR option is given.  If it is, the driver uses its
+argument but with a suffix of \fI.d\fR, otherwise it take the
+basename of the input file and applies a \fI.d\fR suffix.
+.Sp
+If \fB\-MD\fR is used in conjunction with \fB\-E\fR, any
+\&\fB\-o\fR switch is understood to specify the dependency output file
+(but \f(CW@pxref\fR{dashMF,,\-MF}), but if used without \fB\-E\fR, each \fB\-o\fR
+is understood to specify a target object file.
+.Sp
+Since \fB\-E\fR is not implied, \fB\-MD\fR can be used to generate
+a dependency output file as a side-effect of the compilation process.
+.IP "\fB\-MMD\fR" 4
+.IX Item "-MMD"
+Like \fB\-MD\fR except mention only user header files, not system
+\&\-header files.
+.IP "\fB\-fpch\-deps\fR" 4
+.IX Item "-fpch-deps"
+When using precompiled headers, this flag
+will cause the dependency-output flags to also list the files from the
+precompiled header's dependencies.  If not specified only the
+precompiled header would be listed and not the files that were used to
+create it because those files are not consulted when a precompiled
+header is used.
+.IP "\fB\-x c\fR" 4
+.IX Item "-x c"
+.PD 0
+.IP "\fB\-x c++\fR" 4
+.IX Item "-x c++"
+.IP "\fB\-x objective-c\fR" 4
+.IX Item "-x objective-c"
+.IP "\fB\-x assembler-with-cpp\fR" 4
+.IX Item "-x assembler-with-cpp"
+.PD
+Specify the source language: C, \*(C+, Objective\-C, or assembly.  This has
+nothing to do with standards conformance or extensions; it merely
+selects which base syntax to expect.  If you give none of these options,
+cpp will deduce the language from the extension of the source file:
+\&\fB.c\fR, \fB.cc\fR, \fB.m\fR, or \fB.S\fR.  Some other common
+extensions for \*(C+ and assembly are also recognized.  If cpp does not
+recognize the extension, it will treat the file as C; this is the most
+generic mode.
+.Sp
+\&\fBNote:\fR Previous versions of cpp accepted a \fB\-lang\fR option
+which selected both the language and the standards conformance level.
+This option has been removed, because it conflicts with the \fB\-l\fR
+option.
+.IP "\fB\-std=\fR\fIstandard\fR" 4
+.IX Item "-std=standard"
+.PD 0
+.IP "\fB\-ansi\fR" 4
+.IX Item "-ansi"
+.PD
+Specify the standard to which the code should conform.  Currently \s-1CPP\s0
+knows about C and \*(C+ standards; others may be added in the future.
+.Sp
+\&\fIstandard\fR
+may be one of:
+.RS 4
+.ie n .IP """iso9899:1990""" 4
+.el .IP "\f(CWiso9899:1990\fR" 4
+.IX Item "iso9899:1990"
+.PD 0
+.ie n .IP """c89""" 4
+.el .IP "\f(CWc89\fR" 4
+.IX Item "c89"
+.PD
+The \s-1ISO\s0 C standard from 1990.  \fBc89\fR is the customary shorthand for
+this version of the standard.
+.Sp
+The \fB\-ansi\fR option is equivalent to \fB\-std=c89\fR.
+.ie n .IP """iso9899:199409""" 4
+.el .IP "\f(CWiso9899:199409\fR" 4
+.IX Item "iso9899:199409"
+The 1990 C standard, as amended in 1994.
+.ie n .IP """iso9899:1999""" 4
+.el .IP "\f(CWiso9899:1999\fR" 4
+.IX Item "iso9899:1999"
+.PD 0
+.ie n .IP """c99""" 4
+.el .IP "\f(CWc99\fR" 4
+.IX Item "c99"
+.ie n .IP """iso9899:199x""" 4
+.el .IP "\f(CWiso9899:199x\fR" 4
+.IX Item "iso9899:199x"
+.ie n .IP """c9x""" 4
+.el .IP "\f(CWc9x\fR" 4
+.IX Item "c9x"
+.PD
+The revised \s-1ISO\s0 C standard, published in December 1999.  Before
+publication, this was known as C9X.
+.ie n .IP """gnu89""" 4
+.el .IP "\f(CWgnu89\fR" 4
+.IX Item "gnu89"
+The 1990 C standard plus \s-1GNU\s0 extensions.  This is the default.
+.ie n .IP """gnu99""" 4
+.el .IP "\f(CWgnu99\fR" 4
+.IX Item "gnu99"
+.PD 0
+.ie n .IP """gnu9x""" 4
+.el .IP "\f(CWgnu9x\fR" 4
+.IX Item "gnu9x"
+.PD
+The 1999 C standard plus \s-1GNU\s0 extensions.
+.ie n .IP """c++98""" 4
+.el .IP "\f(CWc++98\fR" 4
+.IX Item "c++98"
+The 1998 \s-1ISO\s0 \*(C+ standard plus amendments.
+.ie n .IP """gnu++98""" 4
+.el .IP "\f(CWgnu++98\fR" 4
+.IX Item "gnu++98"
+The same as \fB\-std=c++98\fR plus \s-1GNU\s0 extensions.  This is the
+default for \*(C+ code.
+.RE
+.RS 4
+.RE
+.IP "\fB\-I\-\fR" 4
+.IX Item "-I-"
+Split the include path.  Any directories specified with \fB\-I\fR
+options before \fB\-I\-\fR are searched only for headers requested with
+\&\f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR; they are not searched for
+\&\f(CW\*(C`#include\ <\f(CIfile\f(CW>\*(C'\fR.  If additional directories are
+specified with \fB\-I\fR options after the \fB\-I\-\fR, those
+directories are searched for all \fB#include\fR directives.
+.Sp
+In addition, \fB\-I\-\fR inhibits the use of the directory of the current
+file directory as the first search directory for \f(CW\*(C`#include\ "\f(CIfile\f(CW"\*(C'\fR.
+.IP "\fB\-nostdinc\fR" 4
+.IX Item "-nostdinc"
+Do not search the standard system directories for header files.
+Only the directories you have specified with \fB\-I\fR options
+(and the directory of the current file, if appropriate) are searched.
+.IP "\fB\-nostdinc++\fR" 4
+.IX Item "-nostdinc++"
+Do not search for header files in the \*(C+\-specific standard directories,
+but do still search the other standard directories.  (This option is
+used when building the \*(C+ library.)
+.IP "\fB\-include\fR \fIfile\fR" 4
+.IX Item "-include file"
+Process \fIfile\fR as if \f(CW\*(C`#include "file"\*(C'\fR appeared as the first
+line of the primary source file.  However, the first directory searched
+for \fIfile\fR is the preprocessor's working directory \fIinstead of\fR
+the directory containing the main source file.  If not found there, it
+is searched for in the remainder of the \f(CW\*(C`#include "..."\*(C'\fR search
+chain as normal.
+.Sp
+If multiple \fB\-include\fR options are given, the files are included
+in the order they appear on the command line.
+.IP "\fB\-imacros\fR \fIfile\fR" 4
+.IX Item "-imacros file"
+Exactly like \fB\-include\fR, except that any output produced by
+scanning \fIfile\fR is thrown away.  Macros it defines remain defined.
+This allows you to acquire all the macros from a header without also
+processing its declarations.
+.Sp
+All files specified by \fB\-imacros\fR are processed before all files
+specified by \fB\-include\fR.
+.IP "\fB\-idirafter\fR \fIdir\fR" 4
+.IX Item "-idirafter dir"
+Search \fIdir\fR for header files, but do it \fIafter\fR all
+directories specified with \fB\-I\fR and the standard system directories
+have been exhausted.  \fIdir\fR is treated as a system include directory.
+.IP "\fB\-iprefix\fR \fIprefix\fR" 4
+.IX Item "-iprefix prefix"
+Specify \fIprefix\fR as the prefix for subsequent \fB\-iwithprefix\fR
+options.  If the prefix represents a directory, you should include the
+final \fB/\fR.
+.IP "\fB\-iwithprefix\fR \fIdir\fR" 4
+.IX Item "-iwithprefix dir"
+.PD 0
+.IP "\fB\-iwithprefixbefore\fR \fIdir\fR" 4
+.IX Item "-iwithprefixbefore dir"
+.PD
+Append \fIdir\fR to the prefix specified previously with
+\&\fB\-iprefix\fR, and add the resulting directory to the include search
+path.  \fB\-iwithprefixbefore\fR puts it in the same place \fB\-I\fR
+would; \fB\-iwithprefix\fR puts it where \fB\-idirafter\fR would.
+.IP "\fB\-isystem\fR \fIdir\fR" 4
+.IX Item "-isystem dir"
+Search \fIdir\fR for header files, after all directories specified by
+\&\fB\-I\fR but before the standard system directories.  Mark it
+as a system directory, so that it gets the same special treatment as
+is applied to the standard system directories.
+.IP "\fB\-fdollars\-in\-identifiers\fR" 4
+.IX Item "-fdollars-in-identifiers"
+@anchor{fdollars\-in\-identifiers}
+Accept \fB$\fR in identifiers.
+.IP "\fB\-fpreprocessed\fR" 4
+.IX Item "-fpreprocessed"
+Indicate to the preprocessor that the input file has already been
+preprocessed.  This suppresses things like macro expansion, trigraph
+conversion, escaped newline splicing, and processing of most directives.
+The preprocessor still recognizes and removes comments, so that you can
+pass a file preprocessed with \fB\-C\fR to the compiler without
+problems.  In this mode the integrated preprocessor is little more than
+a tokenizer for the front ends.
+.Sp
+\&\fB\-fpreprocessed\fR is implicit if the input file has one of the
+extensions \fB.i\fR, \fB.ii\fR or \fB.mi\fR.  These are the
+extensions that \s-1GCC\s0 uses for preprocessed files created by
+\&\fB\-save\-temps\fR.
+.IP "\fB\-ftabstop=\fR\fIwidth\fR" 4
+.IX Item "-ftabstop=width"
+Set the distance between tab stops.  This helps the preprocessor report
+correct column numbers in warnings or errors, even if tabs appear on the
+line.  If the value is less than 1 or greater than 100, the option is
+ignored.  The default is 8.
+.IP "\fB\-fexec\-charset=\fR\fIcharset\fR" 4
+.IX Item "-fexec-charset=charset"
+Set the execution character set, used for string and character
+constants.  The default is \s-1UTF\-8\s0.  \fIcharset\fR can be any encoding
+supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine.
+.IP "\fB\-fwide\-exec\-charset=\fR\fIcharset\fR" 4
+.IX Item "-fwide-exec-charset=charset"
+Set the wide execution character set, used for wide string and
+character constants.  The default is \s-1UTF\-32\s0 or \s-1UTF\-16\s0, whichever
+corresponds to the width of \f(CW\*(C`wchar_t\*(C'\fR.  As with
+\&\fB\-ftarget\-charset\fR, \fIcharset\fR can be any encoding supported
+by the system's \f(CW\*(C`iconv\*(C'\fR library routine; however, you will have
+problems with encodings that do not fit exactly in \f(CW\*(C`wchar_t\*(C'\fR.
+.IP "\fB\-finput\-charset=\fR\fIcharset\fR" 4
+.IX Item "-finput-charset=charset"
+Set the input character set, used for translation from the character
+set of the input file to the source character set used by \s-1GCC\s0. If the
+locale does not specify, or \s-1GCC\s0 cannot get this information from the
+locale, the default is \s-1UTF\-8\s0. This can be overridden by either the locale
+or this command line option. Currently the command line option takes
+precedence if there's a conflict. \fIcharset\fR can be any encoding
+supported by the system's \f(CW\*(C`iconv\*(C'\fR library routine.
+.IP "\fB\-fworking\-directory\fR" 4
+.IX Item "-fworking-directory"
+Enable generation of linemarkers in the preprocessor output that will
+let the compiler know the current working directory at the time of
+preprocessing.  When this option is enabled, the preprocessor will
+emit, after the initial linemarker, a second linemarker with the
+current working directory followed by two slashes.  \s-1GCC\s0 will use this
+directory, when it's present in the preprocessed input, as the
+directory emitted as the current working directory in some debugging
+information formats.  This option is implicitly enabled if debugging
+information is enabled, but this can be inhibited with the negated
+form \fB\-fno\-working\-directory\fR.  If the \fB\-P\fR flag is
+present in the command line, this option has no effect, since no
+\&\f(CW\*(C`#line\*(C'\fR directives are emitted whatsoever.
+.IP "\fB\-fno\-show\-column\fR" 4
+.IX Item "-fno-show-column"
+Do not print column numbers in diagnostics.  This may be necessary if
+diagnostics are being scanned by a program that does not understand the
+column numbers, such as \fBdejagnu\fR.
+.IP "\fB\-A\fR \fIpredicate\fR\fB=\fR\fIanswer\fR" 4
+.IX Item "-A predicate=answer"
+Make an assertion with the predicate \fIpredicate\fR and answer
+\&\fIanswer\fR.  This form is preferred to the older form \fB\-A\fR
+\&\fIpredicate\fR\fB(\fR\fIanswer\fR\fB)\fR, which is still supported, because
+it does not use shell special characters.
+.IP "\fB\-A \-\fR\fIpredicate\fR\fB=\fR\fIanswer\fR" 4
+.IX Item "-A -predicate=answer"
+Cancel an assertion with the predicate \fIpredicate\fR and answer
+\&\fIanswer\fR.
+.IP "\fB\-dCHARS\fR" 4
+.IX Item "-dCHARS"
+\&\fI\s-1CHARS\s0\fR is a sequence of one or more of the following characters,
+and must not be preceded by a space.  Other characters are interpreted
+by the compiler proper, or reserved for future versions of \s-1GCC\s0, and so
+are silently ignored.  If you specify characters whose behavior
+conflicts, the result is undefined.
+.RS 4
+.IP "\fBM\fR" 4
+.IX Item "M"
+Instead of the normal output, generate a list of \fB#define\fR
+directives for all the macros defined during the execution of the
+preprocessor, including predefined macros.  This gives you a way of
+finding out what is predefined in your version of the preprocessor.
+Assuming you have no file \fIfoo.h\fR, the command
+.Sp
+.Vb 1
+\&        touch foo.h; cpp -dM foo.h
+.Ve
+.Sp
+will show all the predefined macros.
+.IP "\fBD\fR" 4
+.IX Item "D"
+Like \fBM\fR except in two respects: it does \fInot\fR include the
+predefined macros, and it outputs \fIboth\fR the \fB#define\fR
+directives and the result of preprocessing.  Both kinds of output go to
+the standard output file.
+.IP "\fBN\fR" 4
+.IX Item "N"
+Like \fBD\fR, but emit only the macro names, not their expansions.
+.IP "\fBI\fR" 4
+.IX Item "I"
+Output \fB#include\fR directives in addition to the result of
+preprocessing.
+.RE
+.RS 4
+.RE
+.IP "\fB\-P\fR" 4
+.IX Item "-P"
+Inhibit generation of linemarkers in the output from the preprocessor.
+This might be useful when running the preprocessor on something that is
+not C code, and will be sent to a program which might be confused by the
+linemarkers.
+.IP "\fB\-C\fR" 4
+.IX Item "-C"
+Do not discard comments.  All comments are passed through to the output
+file, except for comments in processed directives, which are deleted
+along with the directive.
+.Sp
+You should be prepared for side effects when using \fB\-C\fR; it
+causes the preprocessor to treat comments as tokens in their own right.
+For example, comments appearing at the start of what would be a
+directive line have the effect of turning that line into an ordinary
+source line, since the first token on the line is no longer a \fB#\fR.
+.IP "\fB\-CC\fR" 4
+.IX Item "-CC"
+Do not discard comments, including during macro expansion.  This is
+like \fB\-C\fR, except that comments contained within macros are
+also passed through to the output file where the macro is expanded.
+.Sp
+In addition to the side-effects of the \fB\-C\fR option, the
+\&\fB\-CC\fR option causes all \*(C+\-style comments inside a macro
+to be converted to C\-style comments.  This is to prevent later use
+of that macro from inadvertently commenting out the remainder of
+the source line.
+.Sp
+The \fB\-CC\fR option is generally used to support lint comments.
+.IP "\fB\-traditional\-cpp\fR" 4
+.IX Item "-traditional-cpp"
+Try to imitate the behavior of old-fashioned C preprocessors, as
+opposed to \s-1ISO\s0 C preprocessors.
+.IP "\fB\-trigraphs\fR" 4
+.IX Item "-trigraphs"
+Process trigraph sequences.
+These are three-character sequences, all starting with \fB??\fR, that
+are defined by \s-1ISO\s0 C to stand for single characters.  For example,
+\&\fB??/\fR stands for \fB\e\fR, so \fB'??/n'\fR is a character
+constant for a newline.  By default, \s-1GCC\s0 ignores trigraphs, but in
+standard-conforming modes it converts them.  See the \fB\-std\fR and
+\&\fB\-ansi\fR options.
+.Sp
+The nine trigraphs and their replacements are
+.Sp
+.Vb 2
+\&        Trigraph:       ??(  ??)  ??<  ??>  ??=  ??/  ??'  ??!  ??-
+\&        Replacement:      [    ]    {    }    #    \e    ^    |    ~
+.Ve
+.IP "\fB\-remap\fR" 4
+.IX Item "-remap"
+Enable special code to work around file systems which only permit very
+short file names, such as \s-1MS\-DOS\s0.
+.IP "\fB\-\-help\fR" 4
+.IX Item "--help"
+.PD 0
+.IP "\fB\-\-target\-help\fR" 4
+.IX Item "--target-help"
+.PD
+Print text describing all the command line options instead of
+preprocessing anything.
+.IP "\fB\-v\fR" 4
+.IX Item "-v"
+Verbose mode.  Print out \s-1GNU\s0 \s-1CPP\s0's version number at the beginning of
+execution, and report the final form of the include path.
+.IP "\fB\-H\fR" 4
+.IX Item "-H"
+Print the name of each header file used, in addition to other normal
+activities.  Each name is indented to show how deep in the
+\&\fB#include\fR stack it is.  Precompiled header files are also
+printed, even if they are found to be invalid; an invalid precompiled
+header file is printed with \fB...x\fR and a valid one with \fB...!\fR .
+.IP "\fB\-version\fR" 4
+.IX Item "-version"
+.PD 0
+.IP "\fB\-\-version\fR" 4
+.IX Item "--version"
+.PD
+Print out \s-1GNU\s0 \s-1CPP\s0's version number.  With one dash, proceed to
+preprocess as normal.  With two dashes, exit immediately.
+.Sh "Passing Options to the Assembler"
+.IX Subsection "Passing Options to the Assembler"
+You can pass options to the assembler.
+.IP "\fB\-Wa,\fR\fIoption\fR" 4
+.IX Item "-Wa,option"
+Pass \fIoption\fR as an option to the assembler.  If \fIoption\fR
+contains commas, it is split into multiple options at the commas.
+.IP "\fB\-Xassembler\fR \fIoption\fR" 4
+.IX Item "-Xassembler option"
+Pass \fIoption\fR as an option to the assembler.  You can use this to
+supply system-specific assembler options which \s-1GCC\s0 does not know how to
+recognize.
+.Sp
+If you want to pass an option that takes an argument, you must use
+\&\fB\-Xassembler\fR twice, once for the option and once for the argument.
+.Sh "Options for Linking"
+.IX Subsection "Options for Linking"
+These options come into play when the compiler links object files into
+an executable output file.  They are meaningless if the compiler is
+not doing a link step.
+.IP "\fIobject-file-name\fR" 4
+.IX Item "object-file-name"
+A file name that does not end in a special recognized suffix is
+considered to name an object file or library.  (Object files are
+distinguished from libraries by the linker according to the file
+contents.)  If linking is done, these object files are used as input
+to the linker.
+.IP "\fB\-c\fR" 4
+.IX Item "-c"
+.PD 0
+.IP "\fB\-S\fR" 4
+.IX Item "-S"
+.IP "\fB\-E\fR" 4
+.IX Item "-E"
+.PD
+If any of these options is used, then the linker is not run, and
+object file names should not be used as arguments.  
+.IP "\fB\-l\fR\fIlibrary\fR" 4
+.IX Item "-llibrary"
+.PD 0
+.IP "\fB\-l\fR \fIlibrary\fR" 4
+.IX Item "-l library"
+.PD
+Search the library named \fIlibrary\fR when linking.  (The second
+alternative with the library as a separate argument is only for
+\&\s-1POSIX\s0 compliance and is not recommended.)
+.Sp
+It makes a difference where in the command you write this option; the
+linker searches and processes libraries and object files in the order they
+are specified.  Thus, \fBfoo.o \-lz bar.o\fR searches library \fBz\fR
+after file \fIfoo.o\fR but before \fIbar.o\fR.  If \fIbar.o\fR refers
+to functions in \fBz\fR, those functions may not be loaded.
+.Sp
+The linker searches a standard list of directories for the library,
+which is actually a file named \fIlib\fIlibrary\fI.a\fR.  The linker
+then uses this file as if it had been specified precisely by name.
+.Sp
+The directories searched include several standard system directories
+plus any that you specify with \fB\-L\fR.
+.Sp
+Normally the files found this way are library files\-\-\-archive files
+whose members are object files.  The linker handles an archive file by
+scanning through it for members which define symbols that have so far
+been referenced but not defined.  But if the file that is found is an
+ordinary object file, it is linked in the usual fashion.  The only
+difference between using an \fB\-l\fR option and specifying a file name
+is that \fB\-l\fR surrounds \fIlibrary\fR with \fBlib\fR and \fB.a\fR
+and searches several directories.
+.IP "\fB\-lobjc\fR" 4
+.IX Item "-lobjc"
+You need this special case of the \fB\-l\fR option in order to
+link an Objective-C program.
+.IP "\fB\-nostartfiles\fR" 4
+.IX Item "-nostartfiles"
+Do not use the standard system startup files when linking.
+The standard system libraries are used normally, unless \fB\-nostdlib\fR
+or \fB\-nodefaultlibs\fR is used.
+.IP "\fB\-nodefaultlibs\fR" 4
+.IX Item "-nodefaultlibs"
+Do not use the standard system libraries when linking.
+Only the libraries you specify will be passed to the linker.
+The standard startup files are used normally, unless \fB\-nostartfiles\fR
+is used.  The compiler may generate calls to memcmp, memset, and memcpy
+for System V (and \s-1ISO\s0 C) environments or to bcopy and bzero for
+\&\s-1BSD\s0 environments.  These entries are usually resolved by entries in
+libc.  These entry points should be supplied through some other
+mechanism when this option is specified.
+.IP "\fB\-nostdlib\fR" 4
+.IX Item "-nostdlib"
+Do not use the standard system startup files or libraries when linking.
+No startup files and only the libraries you specify will be passed to
+the linker.  The compiler may generate calls to memcmp, memset, and memcpy
+for System V (and \s-1ISO\s0 C) environments or to bcopy and bzero for
+\&\s-1BSD\s0 environments.  These entries are usually resolved by entries in
+libc.  These entry points should be supplied through some other
+mechanism when this option is specified.
+.Sp
+One of the standard libraries bypassed by \fB\-nostdlib\fR and
+\&\fB\-nodefaultlibs\fR is \fIlibgcc.a\fR, a library of internal subroutines
+that \s-1GCC\s0 uses to overcome shortcomings of particular machines, or special
+needs for some languages.
+.Sp
+In most cases, you need \fIlibgcc.a\fR even when you want to avoid
+other standard libraries.  In other words, when you specify \fB\-nostdlib\fR
+or \fB\-nodefaultlibs\fR you should usually specify \fB\-lgcc\fR as well.
+This ensures that you have no unresolved references to internal \s-1GCC\s0
+library subroutines.  (For example, \fB_\|_main\fR, used to ensure \*(C+
+constructors will be called.)
+.IP "\fB\-pie\fR" 4
+.IX Item "-pie"
+Produce a position independent executable on targets which support it.
+For predictable results, you must also specify the same set of options
+that were used to generate code (\fB\-fpie\fR, \fB\-fPIE\fR,
+or model suboptions) when you specify this option.
+.IP "\fB\-s\fR" 4
+.IX Item "-s"
+Remove all symbol table and relocation information from the executable.
+.IP "\fB\-static\fR" 4
+.IX Item "-static"
+On systems that support dynamic linking, this prevents linking with the shared
+libraries.  On other systems, this option has no effect.
+.IP "\fB\-shared\fR" 4
+.IX Item "-shared"
+Produce a shared object which can then be linked with other objects to
+form an executable.  Not all systems support this option.  For predictable
+results, you must also specify the same set of options that were used to
+generate code (\fB\-fpic\fR, \fB\-fPIC\fR, or model suboptions)
+when you specify this option.[1]
+.IP "\fB\-shared\-libgcc\fR" 4
+.IX Item "-shared-libgcc"
+.PD 0
+.IP "\fB\-static\-libgcc\fR" 4
+.IX Item "-static-libgcc"
+.PD
+On systems that provide \fIlibgcc\fR as a shared library, these options
+force the use of either the shared or static version respectively.
+If no shared version of \fIlibgcc\fR was built when the compiler was
+configured, these options have no effect.
+.Sp
+There are several situations in which an application should use the
+shared \fIlibgcc\fR instead of the static version.  The most common
+of these is when the application wishes to throw and catch exceptions
+across different shared libraries.  In that case, each of the libraries
+as well as the application itself should use the shared \fIlibgcc\fR.
+.Sp
+Therefore, the G++ and \s-1GCJ\s0 drivers automatically add
+\&\fB\-shared\-libgcc\fR whenever you build a shared library or a main
+executable, because \*(C+ and Java programs typically use exceptions, so
+this is the right thing to do.
+.Sp
+If, instead, you use the \s-1GCC\s0 driver to create shared libraries, you may
+find that they will not always be linked with the shared \fIlibgcc\fR.
+If \s-1GCC\s0 finds, at its configuration time, that you have a non-GNU linker
+or a \s-1GNU\s0 linker that does not support option \fB\-\-eh\-frame\-hdr\fR,
+it will link the shared version of \fIlibgcc\fR into shared libraries
+by default.  Otherwise, it will take advantage of the linker and optimize
+away the linking with the shared version of \fIlibgcc\fR, linking with
+the static version of libgcc by default.  This allows exceptions to
+propagate through such shared libraries, without incurring relocation
+costs at library load time.
+.Sp
+However, if a library or main executable is supposed to throw or catch
+exceptions, you must link it using the G++ or \s-1GCJ\s0 driver, as appropriate
+for the languages used in the program, or using the option
+\&\fB\-shared\-libgcc\fR, such that it is linked with the shared
+\&\fIlibgcc\fR.
+.IP "\fB\-symbolic\fR" 4
+.IX Item "-symbolic"
+Bind references to global symbols when building a shared object.  Warn
+about any unresolved references (unless overridden by the link editor
+option \fB\-Xlinker \-z \-Xlinker defs\fR).  Only a few systems support
+this option.
+.IP "\fB\-Xlinker\fR \fIoption\fR" 4
+.IX Item "-Xlinker option"
+Pass \fIoption\fR as an option to the linker.  You can use this to
+supply system-specific linker options which \s-1GCC\s0 does not know how to
+recognize.
+.Sp
+If you want to pass an option that takes an argument, you must use
+\&\fB\-Xlinker\fR twice, once for the option and once for the argument.
+For example, to pass \fB\-assert definitions\fR, you must write
+\&\fB\-Xlinker \-assert \-Xlinker definitions\fR.  It does not work to write
+\&\fB\-Xlinker \*(L"\-assert definitions\*(R"\fR, because this passes the entire
+string as a single argument, which is not what the linker expects.
+.IP "\fB\-Wl,\fR\fIoption\fR" 4
+.IX Item "-Wl,option"
+Pass \fIoption\fR as an option to the linker.  If \fIoption\fR contains
+commas, it is split into multiple options at the commas.
+.IP "\fB\-u\fR \fIsymbol\fR" 4
+.IX Item "-u symbol"
+Pretend the symbol \fIsymbol\fR is undefined, to force linking of
+library modules to define it.  You can use \fB\-u\fR multiple times with
+different symbols to force loading of additional library modules.
+.Sh "Options for Directory Search"
+.IX Subsection "Options for Directory Search"
+These options specify directories to search for header files, for
+libraries and for parts of the compiler:
+.IP "\fB\-I\fR\fIdir\fR" 4
+.IX Item "-Idir"
+Add the directory \fIdir\fR to the head of the list of directories to be
+searched for header files.  This can be used to override a system header
+file, substituting your own version, since these directories are
+searched before the system header file directories.  However, you should
+not use this option to add directories that contain vendor-supplied
+system header files (use \fB\-isystem\fR for that).  If you use more than
+one \fB\-I\fR option, the directories are scanned in left-to-right
+order; the standard system directories come after.
+.Sp
+If a standard system include directory, or a directory specified with
+\&\fB\-isystem\fR, is also specified with \fB\-I\fR, the \fB\-I\fR
+option will be ignored.  The directory will still be searched but as a
+system directory at its normal position in the system include chain.
+This is to ensure that \s-1GCC\s0's procedure to fix buggy system headers and
+the ordering for the include_next directive are not inadvertently changed.
+If you really need to change the search order for system directories,
+use the \fB\-nostdinc\fR and/or \fB\-isystem\fR options.
+.IP "\fB\-I\-\fR" 4
+.IX Item "-I-"
+Any directories you specify with \fB\-I\fR options before the \fB\-I\-\fR
+option are searched only for the case of \fB#include "\fR\fIfile\fR\fB"\fR;
+they are not searched for \fB#include <\fR\fIfile\fR\fB>\fR.
+.Sp
+If additional directories are specified with \fB\-I\fR options after
+the \fB\-I\-\fR, these directories are searched for all \fB#include\fR
+directives.  (Ordinarily \fIall\fR \fB\-I\fR directories are used
+this way.)
+.Sp
+In addition, the \fB\-I\-\fR option inhibits the use of the current
+directory (where the current input file came from) as the first search
+directory for \fB#include "\fR\fIfile\fR\fB"\fR.  There is no way to
+override this effect of \fB\-I\-\fR.  With \fB\-I.\fR you can specify
+searching the directory which was current when the compiler was
+invoked.  That is not exactly the same as what the preprocessor does
+by default, but it is often satisfactory.
+.Sp
+\&\fB\-I\-\fR does not inhibit the use of the standard system directories
+for header files.  Thus, \fB\-I\-\fR and \fB\-nostdinc\fR are
+independent.
+.IP "\fB\-L\fR\fIdir\fR" 4
+.IX Item "-Ldir"
+Add directory \fIdir\fR to the list of directories to be searched
+for \fB\-l\fR.
+.IP "\fB\-B\fR\fIprefix\fR" 4
+.IX Item "-Bprefix"
+This option specifies where to find the executables, libraries,
+include files, and data files of the compiler itself.
+.Sp
+The compiler driver program runs one or more of the subprograms
+\&\fIcpp\fR, \fIcc1\fR, \fIas\fR and \fIld\fR.  It tries
+\&\fIprefix\fR as a prefix for each program it tries to run, both with and
+without \fImachine\fR\fB/\fR\fIversion\fR\fB/\fR.
+.Sp
+For each subprogram to be run, the compiler driver first tries the
+\&\fB\-B\fR prefix, if any.  If that name is not found, or if \fB\-B\fR
+was not specified, the driver tries two standard prefixes, which are
+\&\fI/usr/lib/gcc/\fR and \fI/usr/local/lib/gcc/\fR.  If neither of
+those results in a file name that is found, the unmodified program
+name is searched for using the directories specified in your
+\&\fB\s-1PATH\s0\fR environment variable.
+.Sp
+The compiler will check to see if the path provided by the \fB\-B\fR
+refers to a directory, and if necessary it will add a directory
+separator character at the end of the path.
+.Sp
+\&\fB\-B\fR prefixes that effectively specify directory names also apply
+to libraries in the linker, because the compiler translates these
+options into \fB\-L\fR options for the linker.  They also apply to
+includes files in the preprocessor, because the compiler translates these
+options into \fB\-isystem\fR options for the preprocessor.  In this case,
+the compiler appends \fBinclude\fR to the prefix.
+.Sp
+The run-time support file \fIlibgcc.a\fR can also be searched for using
+the \fB\-B\fR prefix, if needed.  If it is not found there, the two
+standard prefixes above are tried, and that is all.  The file is left
+out of the link if it is not found by those means.
+.Sp
+Another way to specify a prefix much like the \fB\-B\fR prefix is to use
+the environment variable \fB\s-1GCC_EXEC_PREFIX\s0\fR.  
+.Sp
+As a special kludge, if the path provided by \fB\-B\fR is
+\&\fI[dir/]stage\fIN\fI/\fR, where \fIN\fR is a number in the range 0 to
+9, then it will be replaced by \fI[dir/]include\fR.  This is to help
+with boot-strapping the compiler.
+.IP "\fB\-specs=\fR\fIfile\fR" 4
+.IX Item "-specs=file"
+Process \fIfile\fR after the compiler reads in the standard \fIspecs\fR
+file, in order to override the defaults that the \fIgcc\fR driver
+program uses when determining what switches to pass to \fIcc1\fR,
+\&\fIcc1plus\fR, \fIas\fR, \fIld\fR, etc.  More than one
+\&\fB\-specs=\fR\fIfile\fR can be specified on the command line, and they
+are processed in order, from left to right.
+.Sh "Specifying Target Machine and Compiler Version"
+.IX Subsection "Specifying Target Machine and Compiler Version"
+The usual way to run \s-1GCC\s0 is to run the executable called \fIgcc\fR, or
+\&\fI<machine>\-gcc\fR when cross\-compiling, or
+\&\fI<machine>\-gcc\-<version>\fR to run a version other than the one that
+was installed last.  Sometimes this is inconvenient, so \s-1GCC\s0 provides
+options that will switch to another cross-compiler or version.
+.IP "\fB\-b\fR \fImachine\fR" 4
+.IX Item "-b machine"
+The argument \fImachine\fR specifies the target machine for compilation.
+.Sp
+The value to use for \fImachine\fR is the same as was specified as the
+machine type when configuring \s-1GCC\s0 as a cross\-compiler.  For
+example, if a cross-compiler was configured with \fBconfigure
+i386v\fR, meaning to compile for an 80386 running System V, then you
+would specify \fB\-b i386v\fR to run that cross compiler.
+.IP "\fB\-V\fR \fIversion\fR" 4
+.IX Item "-V version"
+The argument \fIversion\fR specifies which version of \s-1GCC\s0 to run.
+This is useful when multiple versions are installed.  For example,
+\&\fIversion\fR might be \fB2.0\fR, meaning to run \s-1GCC\s0 version 2.0.
+.PP
+The \fB\-V\fR and \fB\-b\fR options work by running the
+\&\fI<machine>\-gcc\-<version>\fR executable, so there's no real reason to
+use them if you can just run that directly.
+.Sh "Hardware Models and Configurations"
+.IX Subsection "Hardware Models and Configurations"
+Earlier we discussed the standard option \fB\-b\fR which chooses among
+different installed compilers for completely different target
+machines, such as \s-1VAX\s0 vs. 68000 vs. 80386.
+.PP
+In addition, each of these target machine types can have its own
+special options, starting with \fB\-m\fR, to choose among various
+hardware models or configurations\-\-\-for example, 68010 vs 68020,
+floating coprocessor or none.  A single installed version of the
+compiler can compile for any model or configuration, according to the
+options specified.
+.PP
+Some configurations of the compiler also support additional special
+options, usually for compatibility with other compilers on the same
+platform.
+.PP
+These options are defined by the macro \f(CW\*(C`TARGET_SWITCHES\*(C'\fR in the
+machine description.  The default for the options is also defined by
+that macro, which enables you to change the defaults.
+.PP
+\fIM680x0 Options\fR
+.IX Subsection "M680x0 Options"
+.PP
+These are the \fB\-m\fR options defined for the 68000 series.  The default
+values for these options depends on which style of 68000 was selected when
+the compiler was configured; the defaults for the most common choices are
+given below.
+.IP "\fB\-m68000\fR" 4
+.IX Item "-m68000"
+.PD 0
+.IP "\fB\-mc68000\fR" 4
+.IX Item "-mc68000"
+.PD
+Generate output for a 68000.  This is the default
+when the compiler is configured for 68000\-based systems.
+.Sp
+Use this option for microcontrollers with a 68000 or \s-1EC000\s0 core,
+including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
+.IP "\fB\-m68020\fR" 4
+.IX Item "-m68020"
+.PD 0
+.IP "\fB\-mc68020\fR" 4
+.IX Item "-mc68020"
+.PD
+Generate output for a 68020.  This is the default
+when the compiler is configured for 68020\-based systems.
+.IP "\fB\-m68881\fR" 4
+.IX Item "-m68881"
+Generate output containing 68881 instructions for floating point.
+This is the default for most 68020 systems unless \fB\-\-nfp\fR was
+specified when the compiler was configured.
+.IP "\fB\-m68030\fR" 4
+.IX Item "-m68030"
+Generate output for a 68030.  This is the default when the compiler is
+configured for 68030\-based systems.
+.IP "\fB\-m68040\fR" 4
+.IX Item "-m68040"
+Generate output for a 68040.  This is the default when the compiler is
+configured for 68040\-based systems.
+.Sp
+This option inhibits the use of 68881/68882 instructions that have to be
+emulated by software on the 68040.  Use this option if your 68040 does not
+have code to emulate those instructions.
+.IP "\fB\-m68060\fR" 4
+.IX Item "-m68060"
+Generate output for a 68060.  This is the default when the compiler is
+configured for 68060\-based systems.
+.Sp
+This option inhibits the use of 68020 and 68881/68882 instructions that
+have to be emulated by software on the 68060.  Use this option if your 68060
+does not have code to emulate those instructions.
+.IP "\fB\-mcpu32\fR" 4
+.IX Item "-mcpu32"
+Generate output for a \s-1CPU32\s0.  This is the default
+when the compiler is configured for CPU32\-based systems.
+.Sp
+Use this option for microcontrollers with a
+\&\s-1CPU32\s0 or \s-1CPU32+\s0 core, including the 68330, 68331, 68332, 68333, 68334,
+68336, 68340, 68341, 68349 and 68360.
+.IP "\fB\-m5200\fR" 4
+.IX Item "-m5200"
+Generate output for a 520X ``coldfire'' family cpu.  This is the default
+when the compiler is configured for 520X\-based systems.
+.Sp
+Use this option for microcontroller with a 5200 core, including
+the \s-1MCF5202\s0, \s-1MCF5203\s0, \s-1MCF5204\s0 and \s-1MCF5202\s0.
+.IP "\fB\-m68020\-40\fR" 4
+.IX Item "-m68020-40"
+Generate output for a 68040, without using any of the new instructions.
+This results in code which can run relatively efficiently on either a
+68020/68881 or a 68030 or a 68040.  The generated code does use the
+68881 instructions that are emulated on the 68040.
+.IP "\fB\-m68020\-60\fR" 4
+.IX Item "-m68020-60"
+Generate output for a 68060, without using any of the new instructions.
+This results in code which can run relatively efficiently on either a
+68020/68881 or a 68030 or a 68040.  The generated code does use the
+68881 instructions that are emulated on the 68060.
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+Generate output containing library calls for floating point.
+\&\fBWarning:\fR the requisite libraries are not available for all m68k
+targets.  Normally the facilities of the machine's usual C compiler are
+used, but this can't be done directly in cross\-compilation.  You must
+make your own arrangements to provide suitable library functions for
+cross\-compilation.  The embedded targets \fBm68k\-*\-aout\fR and
+\&\fBm68k\-*\-coff\fR do provide software floating point support.
+.IP "\fB\-mshort\fR" 4
+.IX Item "-mshort"
+Consider type \f(CW\*(C`int\*(C'\fR to be 16 bits wide, like \f(CW\*(C`short int\*(C'\fR.
+.IP "\fB\-mnobitfield\fR" 4
+.IX Item "-mnobitfield"
+Do not use the bit-field instructions.  The \fB\-m68000\fR, \fB\-mcpu32\fR
+and \fB\-m5200\fR options imply \fB\-mnobitfield\fR.
+.IP "\fB\-mbitfield\fR" 4
+.IX Item "-mbitfield"
+Do use the bit-field instructions.  The \fB\-m68020\fR option implies
+\&\fB\-mbitfield\fR.  This is the default if you use a configuration
+designed for a 68020.
+.IP "\fB\-mrtd\fR" 4
+.IX Item "-mrtd"
+Use a different function-calling convention, in which functions
+that take a fixed number of arguments return with the \f(CW\*(C`rtd\*(C'\fR
+instruction, which pops their arguments while returning.  This
+saves one instruction in the caller since there is no need to pop
+the arguments there.
+.Sp
+This calling convention is incompatible with the one normally
+used on Unix, so you cannot use it if you need to call libraries
+compiled with the Unix compiler.
+.Sp
+Also, you must provide function prototypes for all functions that
+take variable numbers of arguments (including \f(CW\*(C`printf\*(C'\fR);
+otherwise incorrect code will be generated for calls to those
+functions.
+.Sp
+In addition, seriously incorrect code will result if you call a
+function with too many arguments.  (Normally, extra arguments are
+harmlessly ignored.)
+.Sp
+The \f(CW\*(C`rtd\*(C'\fR instruction is supported by the 68010, 68020, 68030,
+68040, 68060 and \s-1CPU32\s0 processors, but not by the 68000 or 5200.
+.IP "\fB\-malign\-int\fR" 4
+.IX Item "-malign-int"
+.PD 0
+.IP "\fB\-mno\-align\-int\fR" 4
+.IX Item "-mno-align-int"
+.PD
+Control whether \s-1GCC\s0 aligns \f(CW\*(C`int\*(C'\fR, \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`long long\*(C'\fR,
+\&\f(CW\*(C`float\*(C'\fR, \f(CW\*(C`double\*(C'\fR, and \f(CW\*(C`long double\*(C'\fR variables on a 32\-bit
+boundary (\fB\-malign\-int\fR) or a 16\-bit boundary (\fB\-mno\-align\-int\fR).
+Aligning variables on 32\-bit boundaries produces code that runs somewhat
+faster on processors with 32\-bit busses at the expense of more memory.
+.Sp
+\&\fBWarning:\fR if you use the \fB\-malign\-int\fR switch, \s-1GCC\s0 will
+align structures containing the above types  differently than
+most published application binary interface specifications for the m68k.
+.IP "\fB\-mpcrel\fR" 4
+.IX Item "-mpcrel"
+Use the pc-relative addressing mode of the 68000 directly, instead of
+using a global offset table.  At present, this option implies \fB\-fpic\fR,
+allowing at most a 16\-bit offset for pc-relative addressing.  \fB\-fPIC\fR is
+not presently supported with \fB\-mpcrel\fR, though this could be supported for
+68020 and higher processors.
+.IP "\fB\-mno\-strict\-align\fR" 4
+.IX Item "-mno-strict-align"
+.PD 0
+.IP "\fB\-mstrict\-align\fR" 4
+.IX Item "-mstrict-align"
+.PD
+Do not (do) assume that unaligned memory references will be handled by
+the system.
+.IP "\fB\-msep\-data\fR" 4
+.IX Item "-msep-data"
+Generate code that allows the data segment to be located in a different
+area of memory from the text segment.  This allows for execute in place in
+an environment without virtual memory management.  This option implies \-fPIC.
+.IP "\fB\-mno\-sep\-data\fR" 4
+.IX Item "-mno-sep-data"
+Generate code that assumes that the data segment follows the text segment.
+This is the default.
+.IP "\fB\-mid\-shared\-library\fR" 4
+.IX Item "-mid-shared-library"
+Generate code that supports shared libraries via the library \s-1ID\s0 method.
+This allows for execute in place and shared libraries in an environment
+without virtual memory management.  This option implies \-fPIC.
+.IP "\fB\-mno\-id\-shared\-library\fR" 4
+.IX Item "-mno-id-shared-library"
+Generate code that doesn't assume \s-1ID\s0 based shared libraries are being used.
+This is the default.
+.IP "\fB\-mshared\-library\-id=n\fR" 4
+.IX Item "-mshared-library-id=n"
+Specified the identification number of the \s-1ID\s0 based shared library being
+compiled.  Specifying a value of 0 will generate more compact code, specifying
+other values will force the allocation of that number to the current
+library but is no more space or time efficient than omitting this option.
+.PP
+\fIM68hc1x Options\fR
+.IX Subsection "M68hc1x Options"
+.PP
+These are the \fB\-m\fR options defined for the 68hc11 and 68hc12
+microcontrollers.  The default values for these options depends on
+which style of microcontroller was selected when the compiler was configured;
+the defaults for the most common choices are given below.
+.IP "\fB\-m6811\fR" 4
+.IX Item "-m6811"
+.PD 0
+.IP "\fB\-m68hc11\fR" 4
+.IX Item "-m68hc11"
+.PD
+Generate output for a 68HC11.  This is the default
+when the compiler is configured for 68HC11\-based systems.
+.IP "\fB\-m6812\fR" 4
+.IX Item "-m6812"
+.PD 0
+.IP "\fB\-m68hc12\fR" 4
+.IX Item "-m68hc12"
+.PD
+Generate output for a 68HC12.  This is the default
+when the compiler is configured for 68HC12\-based systems.
+.IP "\fB\-m68S12\fR" 4
+.IX Item "-m68S12"
+.PD 0
+.IP "\fB\-m68hcs12\fR" 4
+.IX Item "-m68hcs12"
+.PD
+Generate output for a 68HCS12.
+.IP "\fB\-mauto\-incdec\fR" 4
+.IX Item "-mauto-incdec"
+Enable the use of 68HC12 pre and post auto-increment and auto-decrement
+addressing modes.
+.IP "\fB\-minmax\fR" 4
+.IX Item "-minmax"
+.PD 0
+.IP "\fB\-nominmax\fR" 4
+.IX Item "-nominmax"
+.PD
+Enable the use of 68HC12 min and max instructions.
+.IP "\fB\-mlong\-calls\fR" 4
+.IX Item "-mlong-calls"
+.PD 0
+.IP "\fB\-mno\-long\-calls\fR" 4
+.IX Item "-mno-long-calls"
+.PD
+Treat all calls as being far away (near).  If calls are assumed to be
+far away, the compiler will use the \f(CW\*(C`call\*(C'\fR instruction to
+call a function and the \f(CW\*(C`rtc\*(C'\fR instruction for returning.
+.IP "\fB\-mshort\fR" 4
+.IX Item "-mshort"
+Consider type \f(CW\*(C`int\*(C'\fR to be 16 bits wide, like \f(CW\*(C`short int\*(C'\fR.
+.IP "\fB\-msoft\-reg\-count=\fR\fIcount\fR" 4
+.IX Item "-msoft-reg-count=count"
+Specify the number of pseudo-soft registers which are used for the
+code generation.  The maximum number is 32.  Using more pseudo-soft
+register may or may not result in better code depending on the program.
+The default is 4 for 68HC11 and 2 for 68HC12.
+.PP
+\fI\s-1VAX\s0 Options\fR
+.IX Subsection "VAX Options"
+.PP
+These \fB\-m\fR options are defined for the \s-1VAX:\s0
+.IP "\fB\-munix\fR" 4
+.IX Item "-munix"
+Do not output certain jump instructions (\f(CW\*(C`aobleq\*(C'\fR and so on)
+that the Unix assembler for the \s-1VAX\s0 cannot handle across long
+ranges.
+.IP "\fB\-mgnu\fR" 4
+.IX Item "-mgnu"
+Do output those jump instructions, on the assumption that you
+will assemble with the \s-1GNU\s0 assembler.
+.IP "\fB\-mg\fR" 4
+.IX Item "-mg"
+Output code for g\-format floating point numbers instead of d\-format.
+.PP
+\fI\s-1SPARC\s0 Options\fR
+.IX Subsection "SPARC Options"
+.PP
+These \fB\-m\fR options are supported on the \s-1SPARC:\s0
+.IP "\fB\-mno\-app\-regs\fR" 4
+.IX Item "-mno-app-regs"
+.PD 0
+.IP "\fB\-mapp\-regs\fR" 4
+.IX Item "-mapp-regs"
+.PD
+Specify \fB\-mapp\-regs\fR to generate output using the global registers
+2 through 4, which the \s-1SPARC\s0 \s-1SVR4\s0 \s-1ABI\s0 reserves for applications.  This
+is the default.
+.Sp
+To be fully \s-1SVR4\s0 \s-1ABI\s0 compliant at the cost of some performance loss,
+specify \fB\-mno\-app\-regs\fR.  You should compile libraries and system
+software with this option.
+.IP "\fB\-mfpu\fR" 4
+.IX Item "-mfpu"
+.PD 0
+.IP "\fB\-mhard\-float\fR" 4
+.IX Item "-mhard-float"
+.PD
+Generate output containing floating point instructions.  This is the
+default.
+.IP "\fB\-mno\-fpu\fR" 4
+.IX Item "-mno-fpu"
+.PD 0
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+.PD
+Generate output containing library calls for floating point.
+\&\fBWarning:\fR the requisite libraries are not available for all \s-1SPARC\s0
+targets.  Normally the facilities of the machine's usual C compiler are
+used, but this cannot be done directly in cross\-compilation.  You must make
+your own arrangements to provide suitable library functions for
+cross\-compilation.  The embedded targets \fBsparc\-*\-aout\fR and
+\&\fBsparclite\-*\-*\fR do provide software floating point support.
+.Sp
+\&\fB\-msoft\-float\fR changes the calling convention in the output file;
+therefore, it is only useful if you compile \fIall\fR of a program with
+this option.  In particular, you need to compile \fIlibgcc.a\fR, the
+library that comes with \s-1GCC\s0, with \fB\-msoft\-float\fR in order for
+this to work.
+.IP "\fB\-mhard\-quad\-float\fR" 4
+.IX Item "-mhard-quad-float"
+Generate output containing quad-word (long double) floating point
+instructions.
+.IP "\fB\-msoft\-quad\-float\fR" 4
+.IX Item "-msoft-quad-float"
+Generate output containing library calls for quad-word (long double)
+floating point instructions.  The functions called are those specified
+in the \s-1SPARC\s0 \s-1ABI\s0.  This is the default.
+.Sp
+As of this writing, there are no \s-1SPARC\s0 implementations that have hardware
+support for the quad-word floating point instructions.  They all invoke
+a trap handler for one of these instructions, and then the trap handler
+emulates the effect of the instruction.  Because of the trap handler overhead,
+this is much slower than calling the \s-1ABI\s0 library routines.  Thus the
+\&\fB\-msoft\-quad\-float\fR option is the default.
+.IP "\fB\-mno\-flat\fR" 4
+.IX Item "-mno-flat"
+.PD 0
+.IP "\fB\-mflat\fR" 4
+.IX Item "-mflat"
+.PD
+With \fB\-mflat\fR, the compiler does not generate save/restore instructions
+and will use a ``flat'' or single register window calling convention.
+This model uses \f(CW%i7\fR as the frame pointer and is compatible with the normal
+register window model.  Code from either may be intermixed.
+The local registers and the input registers (0\-\-5) are still treated as
+``call saved'' registers and will be saved on the stack as necessary.
+.Sp
+With \fB\-mno\-flat\fR (the default), the compiler emits save/restore
+instructions (except for leaf functions) and is the normal mode of operation.
+.Sp
+These options are deprecated and will be deleted in a future \s-1GCC\s0 release.
+.IP "\fB\-mno\-unaligned\-doubles\fR" 4
+.IX Item "-mno-unaligned-doubles"
+.PD 0
+.IP "\fB\-munaligned\-doubles\fR" 4
+.IX Item "-munaligned-doubles"
+.PD
+Assume that doubles have 8 byte alignment.  This is the default.
+.Sp
+With \fB\-munaligned\-doubles\fR, \s-1GCC\s0 assumes that doubles have 8 byte
+alignment only if they are contained in another type, or if they have an
+absolute address.  Otherwise, it assumes they have 4 byte alignment.
+Specifying this option avoids some rare compatibility problems with code
+generated by other compilers.  It is not the default because it results
+in a performance loss, especially for floating point code.
+.IP "\fB\-mno\-faster\-structs\fR" 4
+.IX Item "-mno-faster-structs"
+.PD 0
+.IP "\fB\-mfaster\-structs\fR" 4
+.IX Item "-mfaster-structs"
+.PD
+With \fB\-mfaster\-structs\fR, the compiler assumes that structures
+should have 8 byte alignment.  This enables the use of pairs of
+\&\f(CW\*(C`ldd\*(C'\fR and \f(CW\*(C`std\*(C'\fR instructions for copies in structure
+assignment, in place of twice as many \f(CW\*(C`ld\*(C'\fR and \f(CW\*(C`st\*(C'\fR pairs.
+However, the use of this changed alignment directly violates the \s-1SPARC\s0
+\&\s-1ABI\s0.  Thus, it's intended only for use on targets where the developer
+acknowledges that their resulting code will not be directly in line with
+the rules of the \s-1ABI\s0.
+.IP "\fB\-mimpure\-text\fR" 4
+.IX Item "-mimpure-text"
+\&\fB\-mimpure\-text\fR, used in addition to \fB\-shared\fR, tells
+the compiler to not pass \fB\-z text\fR to the linker when linking a
+shared object.  Using this option, you can link position-dependent
+code into a shared object.
+.Sp
+\&\fB\-mimpure\-text\fR suppresses the ``relocations remain against
+allocatable but non-writable sections'' linker error message.
+However, the necessary relocations will trigger copy\-on\-write, and the
+shared object is not actually shared across processes.  Instead of
+using \fB\-mimpure\-text\fR, you should compile all source code with
+\&\fB\-fpic\fR or \fB\-fPIC\fR.
+.Sp
+This option is only available on SunOS and Solaris.
+.IP "\fB\-mv8\fR" 4
+.IX Item "-mv8"
+.PD 0
+.IP "\fB\-msparclite\fR" 4
+.IX Item "-msparclite"
+.PD
+These two options select variations on the \s-1SPARC\s0 architecture.
+These options are deprecated and will be deleted in a future \s-1GCC\s0 release.
+They have been replaced with \fB\-mcpu=xxx\fR.
+.IP "\fB\-mcypress\fR" 4
+.IX Item "-mcypress"
+.PD 0
+.IP "\fB\-msupersparc\fR" 4
+.IX Item "-msupersparc"
+.IP "\fB\-mf930\fR" 4
+.IX Item "-mf930"
+.IP "\fB\-mf934\fR" 4
+.IX Item "-mf934"
+.PD
+These four options select the processor for which the code is optimized.
+These options are deprecated and will be deleted in a future \s-1GCC\s0 release.
+They have been replaced with \fB\-mcpu=xxx\fR.
+.IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4
+.IX Item "-mcpu=cpu_type"
+Set the instruction set, register set, and instruction scheduling parameters
+for machine type \fIcpu_type\fR.  Supported values for \fIcpu_type\fR are
+\&\fBv7\fR, \fBcypress\fR, \fBv8\fR, \fBsupersparc\fR, \fBsparclite\fR,
+\&\fBf930\fR, \fBf934\fR, \fBhypersparc\fR, \fBsparclite86x\fR,
+\&\fBsparclet\fR, \fBtsc701\fR, \fBv9\fR, \fBultrasparc\fR, and
+\&\fBultrasparc3\fR.
+.Sp
+Default instruction scheduling parameters are used for values that select
+an architecture and not an implementation.  These are \fBv7\fR, \fBv8\fR,
+\&\fBsparclite\fR, \fBsparclet\fR, \fBv9\fR.
+.Sp
+Here is a list of each supported architecture and their supported
+implementations.
+.Sp
+.Vb 5
+\&            v7:             cypress
+\&            v8:             supersparc, hypersparc
+\&            sparclite:      f930, f934, sparclite86x
+\&            sparclet:       tsc701
+\&            v9:             ultrasparc, ultrasparc3
+.Ve
+.Sp
+By default (unless configured otherwise), \s-1GCC\s0 generates code for the V7
+variant of the \s-1SPARC\s0 architecture.  With \fB\-mcpu=cypress\fR, the compiler
+additionally optimizes it for the Cypress \s-1CY7C602\s0 chip, as used in the
+SPARCStation/SPARCServer 3xx series.  This is also appropriate for the older
+SPARCStation 1, 2, \s-1IPX\s0 etc.
+.Sp
+With \fB\-mcpu=v8\fR, \s-1GCC\s0 generates code for the V8 variant of the \s-1SPARC\s0
+architecture.  The only difference from V7 code is that the compiler emits
+the integer multiply and integer divide instructions which exist in \s-1SPARC\-V8\s0
+but not in \s-1SPARC\-V7\s0.  With \fB\-mcpu=supersparc\fR, the compiler additionally
+optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
+2000 series.
+.Sp
+With \fB\-mcpu=sparclite\fR, \s-1GCC\s0 generates code for the SPARClite variant of
+the \s-1SPARC\s0 architecture.  This adds the integer multiply, integer divide step
+and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClite but not in \s-1SPARC\-V7\s0.
+With \fB\-mcpu=f930\fR, the compiler additionally optimizes it for the
+Fujitsu \s-1MB86930\s0 chip, which is the original SPARClite, with no \s-1FPU\s0.  With
+\&\fB\-mcpu=f934\fR, the compiler additionally optimizes it for the Fujitsu
+\&\s-1MB86934\s0 chip, which is the more recent SPARClite with \s-1FPU\s0.
+.Sp
+With \fB\-mcpu=sparclet\fR, \s-1GCC\s0 generates code for the SPARClet variant of
+the \s-1SPARC\s0 architecture.  This adds the integer multiply, multiply/accumulate,
+integer divide step and scan (\f(CW\*(C`ffs\*(C'\fR) instructions which exist in SPARClet
+but not in \s-1SPARC\-V7\s0.  With \fB\-mcpu=tsc701\fR, the compiler additionally
+optimizes it for the \s-1TEMIC\s0 SPARClet chip.
+.Sp
+With \fB\-mcpu=v9\fR, \s-1GCC\s0 generates code for the V9 variant of the \s-1SPARC\s0
+architecture.  This adds 64\-bit integer and floating-point move instructions,
+3 additional floating-point condition code registers and conditional move
+instructions.  With \fB\-mcpu=ultrasparc\fR, the compiler additionally
+optimizes it for the Sun UltraSPARC I/II chips.  With
+\&\fB\-mcpu=ultrasparc3\fR, the compiler additionally optimizes it for the
+Sun UltraSPARC \s-1III\s0 chip.
+.IP "\fB\-mtune=\fR\fIcpu_type\fR" 4
+.IX Item "-mtune=cpu_type"
+Set the instruction scheduling parameters for machine type
+\&\fIcpu_type\fR, but do not set the instruction set or register set that the
+option \fB\-mcpu=\fR\fIcpu_type\fR would.
+.Sp
+The same values for \fB\-mcpu=\fR\fIcpu_type\fR can be used for
+\&\fB\-mtune=\fR\fIcpu_type\fR, but the only useful values are those
+that select a particular cpu implementation.  Those are \fBcypress\fR,
+\&\fBsupersparc\fR, \fBhypersparc\fR, \fBf930\fR, \fBf934\fR,
+\&\fBsparclite86x\fR, \fBtsc701\fR, \fBultrasparc\fR, and
+\&\fBultrasparc3\fR.
+.IP "\fB\-mv8plus\fR" 4
+.IX Item "-mv8plus"
+.PD 0
+.IP "\fB\-mno\-v8plus\fR" 4
+.IX Item "-mno-v8plus"
+.PD
+With \fB\-mv8plus\fR, \s-1GCC\s0 generates code for the \s-1SPARC\-V8+\s0 \s-1ABI\s0.  The
+difference from the V8 \s-1ABI\s0 is that the global and out registers are
+considered 64\-bit wide.  This is enabled by default on Solaris in 32\-bit
+mode for all \s-1SPARC\-V9\s0 processors.
+.IP "\fB\-mvis\fR" 4
+.IX Item "-mvis"
+.PD 0
+.IP "\fB\-mno\-vis\fR" 4
+.IX Item "-mno-vis"
+.PD
+With \fB\-mvis\fR, \s-1GCC\s0 generates code that takes advantage of the UltraSPARC
+Visual Instruction Set extensions.  The default is \fB\-mno\-vis\fR.
+.PP
+These \fB\-m\fR options are supported in addition to the above
+on \s-1SPARC\-V9\s0 processors in 64\-bit environments:
+.IP "\fB\-mlittle\-endian\fR" 4
+.IX Item "-mlittle-endian"
+Generate code for a processor running in little-endian mode. It is only
+available for a few configurations and most notably not on Solaris.
+.IP "\fB\-m32\fR" 4
+.IX Item "-m32"
+.PD 0
+.IP "\fB\-m64\fR" 4
+.IX Item "-m64"
+.PD
+Generate code for a 32\-bit or 64\-bit environment.
+The 32\-bit environment sets int, long and pointer to 32 bits.
+The 64\-bit environment sets int to 32 bits and long and pointer
+to 64 bits.
+.IP "\fB\-mcmodel=medlow\fR" 4
+.IX Item "-mcmodel=medlow"
+Generate code for the Medium/Low code model: 64\-bit addresses, programs
+must be linked in the low 32 bits of memory.  Programs can be statically
+or dynamically linked.
+.IP "\fB\-mcmodel=medmid\fR" 4
+.IX Item "-mcmodel=medmid"
+Generate code for the Medium/Middle code model: 64\-bit addresses, programs
+must be linked in the low 44 bits of memory, the text and data segments must
+be less than 2GB in size and the data segment must be located within 2GB of
+the text segment.
+.IP "\fB\-mcmodel=medany\fR" 4
+.IX Item "-mcmodel=medany"
+Generate code for the Medium/Anywhere code model: 64\-bit addresses, programs
+may be linked anywhere in memory, the text and data segments must be less
+than 2GB in size and the data segment must be located within 2GB of the
+text segment.
+.IP "\fB\-mcmodel=embmedany\fR" 4
+.IX Item "-mcmodel=embmedany"
+Generate code for the Medium/Anywhere code model for embedded systems:
+64\-bit addresses, the text and data segments must be less than 2GB in
+size, both starting anywhere in memory (determined at link time).  The
+global register \f(CW%g4\fR points to the base of the data segment.  Programs
+are statically linked and \s-1PIC\s0 is not supported.
+.IP "\fB\-mstack\-bias\fR" 4
+.IX Item "-mstack-bias"
+.PD 0
+.IP "\fB\-mno\-stack\-bias\fR" 4
+.IX Item "-mno-stack-bias"
+.PD
+With \fB\-mstack\-bias\fR, \s-1GCC\s0 assumes that the stack pointer, and
+frame pointer if present, are offset by \-2047 which must be added back
+when making stack frame references.  This is the default in 64\-bit mode.
+Otherwise, assume no such offset is present.
+.PP
+These switches are supported in addition to the above on Solaris:
+.IP "\fB\-threads\fR" 4
+.IX Item "-threads"
+Add support for multithreading using the Solaris threads library.  This
+option sets flags for both the preprocessor and linker.  This option does
+not affect the thread safety of object code produced by the compiler or
+that of libraries supplied with it.
+.IP "\fB\-pthreads\fR" 4
+.IX Item "-pthreads"
+Add support for multithreading using the \s-1POSIX\s0 threads library.  This
+option sets flags for both the preprocessor and linker.  This option does
+not affect the thread safety of object code produced  by the compiler or
+that of libraries supplied with it.
+.PP
+\fI\s-1ARM\s0 Options\fR
+.IX Subsection "ARM Options"
+.PP
+These \fB\-m\fR options are defined for Advanced \s-1RISC\s0 Machines (\s-1ARM\s0)
+architectures:
+.IP "\fB\-mapcs\-frame\fR" 4
+.IX Item "-mapcs-frame"
+Generate a stack frame that is compliant with the \s-1ARM\s0 Procedure Call
+Standard for all functions, even if this is not strictly necessary for
+correct execution of the code.  Specifying \fB\-fomit\-frame\-pointer\fR
+with this option will cause the stack frames not to be generated for
+leaf functions.  The default is \fB\-mno\-apcs\-frame\fR.
+.IP "\fB\-mapcs\fR" 4
+.IX Item "-mapcs"
+This is a synonym for \fB\-mapcs\-frame\fR.
+.IP "\fB\-mapcs\-26\fR" 4
+.IX Item "-mapcs-26"
+Generate code for a processor running with a 26\-bit program counter,
+and conforming to the function calling standards for the \s-1APCS\s0 26\-bit
+option.
+.Sp
+This option is deprecated.  Future releases of the \s-1GCC\s0 will only support
+generating code that runs in apcs\-32 mode.
+.IP "\fB\-mapcs\-32\fR" 4
+.IX Item "-mapcs-32"
+Generate code for a processor running with a 32\-bit program counter,
+and conforming to the function calling standards for the \s-1APCS\s0 32\-bit
+option.
+.Sp
+This flag is deprecated.  Future releases of \s-1GCC\s0 will make this flag
+unconditional.
+.IP "\fB\-mthumb\-interwork\fR" 4
+.IX Item "-mthumb-interwork"
+Generate code which supports calling between the \s-1ARM\s0 and Thumb
+instruction sets.  Without this option the two instruction sets cannot
+be reliably used inside one program.  The default is
+\&\fB\-mno\-thumb\-interwork\fR, since slightly larger code is generated
+when \fB\-mthumb\-interwork\fR is specified.
+.IP "\fB\-mno\-sched\-prolog\fR" 4
+.IX Item "-mno-sched-prolog"
+Prevent the reordering of instructions in the function prolog, or the
+merging of those instruction with the instructions in the function's
+body.  This means that all functions will start with a recognizable set
+of instructions (or in fact one of a choice from a small set of
+different function prologues), and this information can be used to
+locate the start if functions inside an executable piece of code.  The
+default is \fB\-msched\-prolog\fR.
+.IP "\fB\-mhard\-float\fR" 4
+.IX Item "-mhard-float"
+Generate output containing floating point instructions.  This is the
+default.
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+Generate output containing library calls for floating point.
+\&\fBWarning:\fR the requisite libraries are not available for all \s-1ARM\s0
+targets.  Normally the facilities of the machine's usual C compiler are
+used, but this cannot be done directly in cross\-compilation.  You must make
+your own arrangements to provide suitable library functions for
+cross\-compilation.
+.Sp
+\&\fB\-msoft\-float\fR changes the calling convention in the output file;
+therefore, it is only useful if you compile \fIall\fR of a program with
+this option.  In particular, you need to compile \fIlibgcc.a\fR, the
+library that comes with \s-1GCC\s0, with \fB\-msoft\-float\fR in order for
+this to work.
+.IP "\fB\-mlittle\-endian\fR" 4
+.IX Item "-mlittle-endian"
+Generate code for a processor running in little-endian mode.  This is
+the default for all standard configurations.
+.IP "\fB\-mbig\-endian\fR" 4
+.IX Item "-mbig-endian"
+Generate code for a processor running in big-endian mode; the default is
+to compile code for a little-endian processor.
+.IP "\fB\-mwords\-little\-endian\fR" 4
+.IX Item "-mwords-little-endian"
+This option only applies when generating code for big-endian processors.
+Generate code for a little-endian word order but a big-endian byte
+order.  That is, a byte order of the form \fB32107654\fR.  Note: this
+option should only be used if you require compatibility with code for
+big-endian \s-1ARM\s0 processors generated by versions of the compiler prior to
+2.8.
+.IP "\fB\-malignment\-traps\fR" 4
+.IX Item "-malignment-traps"
+Generate code that will not trap if the \s-1MMU\s0 has alignment traps enabled.
+On \s-1ARM\s0 architectures prior to ARMv4, there were no instructions to
+access half-word objects stored in memory.  However, when reading from
+memory a feature of the \s-1ARM\s0 architecture allows a word load to be used,
+even if the address is unaligned, and the processor core will rotate the
+data as it is being loaded.  This option tells the compiler that such
+misaligned accesses will cause a \s-1MMU\s0 trap and that it should instead
+synthesize the access as a series of byte accesses.  The compiler can
+still use word accesses to load half-word data if it knows that the
+address is aligned to a word boundary.
+.Sp
+This option has no effect when compiling for \s-1ARM\s0 architecture 4 or later,
+since these processors have instructions to directly access half-word
+objects in memory.
+.IP "\fB\-mno\-alignment\-traps\fR" 4
+.IX Item "-mno-alignment-traps"
+Generate code that assumes that the \s-1MMU\s0 will not trap unaligned
+accesses.  This produces better code when the target instruction set
+does not have half-word memory operations (i.e. implementations prior to
+ARMv4).
+.Sp
+Note that you cannot use this option to access unaligned word objects,
+since the processor will only fetch one 32\-bit aligned object from
+memory.
+.Sp
+The default setting is \fB\-malignment\-traps\fR, since this produces
+code that will also run on processors implementing \s-1ARM\s0 architecture
+version 6 or later.
+.Sp
+This option is deprecated and will be removed in the next release of \s-1GCC\s0.
+.IP "\fB\-mcpu=\fR\fIname\fR" 4
+.IX Item "-mcpu=name"
+This specifies the name of the target \s-1ARM\s0 processor.  \s-1GCC\s0 uses this name
+to determine what kind of instructions it can emit when generating
+assembly code.  Permissible names are: \fBarm2\fR, \fBarm250\fR,
+\&\fBarm3\fR, \fBarm6\fR, \fBarm60\fR, \fBarm600\fR, \fBarm610\fR,
+\&\fBarm620\fR, \fBarm7\fR, \fBarm7m\fR, \fBarm7d\fR, \fBarm7dm\fR,
+\&\fBarm7di\fR, \fBarm7dmi\fR, \fBarm70\fR, \fBarm700\fR,
+\&\fBarm700i\fR, \fBarm710\fR, \fBarm710c\fR, \fBarm7100\fR,
+\&\fBarm7500\fR, \fBarm7500fe\fR, \fBarm7tdmi\fR, \fBarm8\fR,
+\&\fBstrongarm\fR, \fBstrongarm110\fR, \fBstrongarm1100\fR,
+\&\fBarm8\fR, \fBarm810\fR, \fBarm9\fR, \fBarm9e\fR, \fBarm920\fR,
+\&\fBarm920t\fR, \fBarm926ejs\fR, \fBarm940t\fR, \fBarm9tdmi\fR,
+\&\fBarm10tdmi\fR, \fBarm1020t\fR, \fBarm1026ejs\fR,
+\&\fBarm1136js\fR, \fBarm1136jfs\fR ,\fBxscale\fR, \fBiwmmxt\fR,
+\&\fBep9312\fR.
+.IP "\fB\-mtune=\fR\fIname\fR" 4
+.IX Item "-mtune=name"
+This option is very similar to the \fB\-mcpu=\fR option, except that
+instead of specifying the actual target processor type, and hence
+restricting which instructions can be used, it specifies that \s-1GCC\s0 should
+tune the performance of the code as if the target were of the type
+specified in this option, but still choosing the instructions that it
+will generate based on the cpu specified by a \fB\-mcpu=\fR option.
+For some \s-1ARM\s0 implementations better performance can be obtained by using
+this option.
+.IP "\fB\-march=\fR\fIname\fR" 4
+.IX Item "-march=name"
+This specifies the name of the target \s-1ARM\s0 architecture.  \s-1GCC\s0 uses this
+name to determine what kind of instructions it can emit when generating
+assembly code.  This option can be used in conjunction with or instead
+of the \fB\-mcpu=\fR option.  Permissible names are: \fBarmv2\fR,
+\&\fBarmv2a\fR, \fBarmv3\fR, \fBarmv3m\fR, \fBarmv4\fR, \fBarmv4t\fR,
+\&\fBarmv5\fR, \fBarmv5t\fR, \fBarmv5te\fR, \fBarmv6j\fR,
+\&\fBiwmmxt\fR, \fBep9312\fR.
+.IP "\fB\-mfpe=\fR\fInumber\fR" 4
+.IX Item "-mfpe=number"
+.PD 0
+.IP "\fB\-mfp=\fR\fInumber\fR" 4
+.IX Item "-mfp=number"
+.PD
+This specifies the version of the floating point emulation available on
+the target.  Permissible values are 2 and 3.  \fB\-mfp=\fR is a synonym
+for \fB\-mfpe=\fR, for compatibility with older versions of \s-1GCC\s0.
+.IP "\fB\-mstructure\-size\-boundary=\fR\fIn\fR" 4
+.IX Item "-mstructure-size-boundary=n"
+The size of all structures and unions will be rounded up to a multiple
+of the number of bits set by this option.  Permissible values are 8 and
+32.  The default value varies for different toolchains.  For the \s-1COFF\s0
+targeted toolchain the default value is 8.  Specifying the larger number
+can produce faster, more efficient code, but can also increase the size
+of the program.  The two values are potentially incompatible.  Code
+compiled with one value cannot necessarily expect to work with code or
+libraries compiled with the other value, if they exchange information
+using structures or unions.
+.IP "\fB\-mabort\-on\-noreturn\fR" 4
+.IX Item "-mabort-on-noreturn"
+Generate a call to the function \f(CW\*(C`abort\*(C'\fR at the end of a
+\&\f(CW\*(C`noreturn\*(C'\fR function.  It will be executed if the function tries to
+return.
+.IP "\fB\-mlong\-calls\fR" 4
+.IX Item "-mlong-calls"
+.PD 0
+.IP "\fB\-mno\-long\-calls\fR" 4
+.IX Item "-mno-long-calls"
+.PD
+Tells the compiler to perform function calls by first loading the
+address of the function into a register and then performing a subroutine
+call on this register.  This switch is needed if the target function
+will lie outside of the 64 megabyte addressing range of the offset based
+version of subroutine call instruction.
+.Sp
+Even if this switch is enabled, not all function calls will be turned
+into long calls.  The heuristic is that static functions, functions
+which have the \fBshort-call\fR attribute, functions that are inside
+the scope of a \fB#pragma no_long_calls\fR directive and functions whose
+definitions have already been compiled within the current compilation
+unit, will not be turned into long calls.  The exception to this rule is
+that weak function definitions, functions with the \fBlong-call\fR
+attribute or the \fBsection\fR attribute, and functions that are within
+the scope of a \fB#pragma long_calls\fR directive, will always be
+turned into long calls.
+.Sp
+This feature is not enabled by default.  Specifying
+\&\fB\-mno\-long\-calls\fR will restore the default behavior, as will
+placing the function calls within the scope of a \fB#pragma
+long_calls_off\fR directive.  Note these switches have no effect on how
+the compiler generates code to handle function calls via function
+pointers.
+.IP "\fB\-mnop\-fun\-dllimport\fR" 4
+.IX Item "-mnop-fun-dllimport"
+Disable support for the \f(CW\*(C`dllimport\*(C'\fR attribute.
+.IP "\fB\-msingle\-pic\-base\fR" 4
+.IX Item "-msingle-pic-base"
+Treat the register used for \s-1PIC\s0 addressing as read\-only, rather than
+loading it in the prologue for each function.  The run-time system is
+responsible for initializing this register with an appropriate value
+before execution begins.
+.IP "\fB\-mpic\-register=\fR\fIreg\fR" 4
+.IX Item "-mpic-register=reg"
+Specify the register to be used for \s-1PIC\s0 addressing.  The default is R10
+unless stack-checking is enabled, when R9 is used.
+.IP "\fB\-mcirrus\-fix\-invalid\-insns\fR" 4
+.IX Item "-mcirrus-fix-invalid-insns"
+Insert NOPs into the instruction stream to in order to work around
+problems with invalid Maverick instruction combinations.  This option
+is only valid if the \fB\-mcpu=ep9312\fR option has been used to
+enable generation of instructions for the Cirrus Maverick floating
+point co\-processor.  This option is not enabled by default, since the
+problem is only present in older Maverick implementations.  The default
+can be re-enabled by use of the \fB\-mno\-cirrus\-fix\-invalid\-insns\fR
+switch.
+.IP "\fB\-mpoke\-function\-name\fR" 4
+.IX Item "-mpoke-function-name"
+Write the name of each function into the text section, directly
+preceding the function prologue.  The generated code is similar to this:
+.Sp
+.Vb 9
+\&             t0
+\&                 .ascii "arm_poke_function_name", 0
+\&                 .align
+\&             t1
+\&                 .word 0xff000000 + (t1 - t0)
+\&             arm_poke_function_name
+\&                 mov     ip, sp
+\&                 stmfd   sp!, {fp, ip, lr, pc}
+\&                 sub     fp, ip, #4
+.Ve
+.Sp
+When performing a stack backtrace, code can inspect the value of
+\&\f(CW\*(C`pc\*(C'\fR stored at \f(CW\*(C`fp + 0\*(C'\fR.  If the trace function then looks at
+location \f(CW\*(C`pc \- 12\*(C'\fR and the top 8 bits are set, then we know that
+there is a function name embedded immediately preceding this location
+and has length \f(CW\*(C`((pc[\-3]) & 0xff000000)\*(C'\fR.
+.IP "\fB\-mthumb\fR" 4
+.IX Item "-mthumb"
+Generate code for the 16\-bit Thumb instruction set.  The default is to
+use the 32\-bit \s-1ARM\s0 instruction set.
+.IP "\fB\-mtpcs\-frame\fR" 4
+.IX Item "-mtpcs-frame"
+Generate a stack frame that is compliant with the Thumb Procedure Call
+Standard for all non-leaf functions.  (A leaf function is one that does
+not call any other functions.)  The default is \fB\-mno\-tpcs\-frame\fR.
+.IP "\fB\-mtpcs\-leaf\-frame\fR" 4
+.IX Item "-mtpcs-leaf-frame"
+Generate a stack frame that is compliant with the Thumb Procedure Call
+Standard for all leaf functions.  (A leaf function is one that does
+not call any other functions.)  The default is \fB\-mno\-apcs\-leaf\-frame\fR.
+.IP "\fB\-mcallee\-super\-interworking\fR" 4
+.IX Item "-mcallee-super-interworking"
+Gives all externally visible functions in the file being compiled an \s-1ARM\s0
+instruction set header which switches to Thumb mode before executing the
+rest of the function.  This allows these functions to be called from
+non-interworking code.
+.IP "\fB\-mcaller\-super\-interworking\fR" 4
+.IX Item "-mcaller-super-interworking"
+Allows calls via function pointers (including virtual functions) to
+execute correctly regardless of whether the target code has been
+compiled for interworking or not.  There is a small overhead in the cost
+of executing a function pointer if this option is enabled.
+.PP
+\fI\s-1MN10300\s0 Options\fR
+.IX Subsection "MN10300 Options"
+.PP
+These \fB\-m\fR options are defined for Matsushita \s-1MN10300\s0 architectures:
+.IP "\fB\-mmult\-bug\fR" 4
+.IX Item "-mmult-bug"
+Generate code to avoid bugs in the multiply instructions for the \s-1MN10300\s0
+processors.  This is the default.
+.IP "\fB\-mno\-mult\-bug\fR" 4
+.IX Item "-mno-mult-bug"
+Do not generate code to avoid bugs in the multiply instructions for the
+\&\s-1MN10300\s0 processors.
+.IP "\fB\-mam33\fR" 4
+.IX Item "-mam33"
+Generate code which uses features specific to the \s-1AM33\s0 processor.
+.IP "\fB\-mno\-am33\fR" 4
+.IX Item "-mno-am33"
+Do not generate code which uses features specific to the \s-1AM33\s0 processor.  This
+is the default.
+.IP "\fB\-mno\-crt0\fR" 4
+.IX Item "-mno-crt0"
+Do not link in the C run-time initialization object file.
+.IP "\fB\-mrelax\fR" 4
+.IX Item "-mrelax"
+Indicate to the linker that it should perform a relaxation optimization pass
+to shorten branches, calls and absolute memory addresses.  This option only
+has an effect when used on the command line for the final link step.
+.Sp
+This option makes symbolic debugging impossible.
+.PP
+\fIM32R/D Options\fR
+.IX Subsection "M32R/D Options"
+.PP
+These \fB\-m\fR options are defined for Renesas M32R/D architectures:
+.IP "\fB\-m32r2\fR" 4
+.IX Item "-m32r2"
+Generate code for the M32R/2.
+.IP "\fB\-m32rx\fR" 4
+.IX Item "-m32rx"
+Generate code for the M32R/X.
+.IP "\fB\-m32r\fR" 4
+.IX Item "-m32r"
+Generate code for the M32R.  This is the default.
+.IP "\fB\-mmodel=small\fR" 4
+.IX Item "-mmodel=small"
+Assume all objects live in the lower 16MB of memory (so that their addresses
+can be loaded with the \f(CW\*(C`ld24\*(C'\fR instruction), and assume all subroutines
+are reachable with the \f(CW\*(C`bl\*(C'\fR instruction.
+This is the default.
+.Sp
+The addressability of a particular object can be set with the
+\&\f(CW\*(C`model\*(C'\fR attribute.
+.IP "\fB\-mmodel=medium\fR" 4
+.IX Item "-mmodel=medium"
+Assume objects may be anywhere in the 32\-bit address space (the compiler
+will generate \f(CW\*(C`seth/add3\*(C'\fR instructions to load their addresses), and
+assume all subroutines are reachable with the \f(CW\*(C`bl\*(C'\fR instruction.
+.IP "\fB\-mmodel=large\fR" 4
+.IX Item "-mmodel=large"
+Assume objects may be anywhere in the 32\-bit address space (the compiler
+will generate \f(CW\*(C`seth/add3\*(C'\fR instructions to load their addresses), and
+assume subroutines may not be reachable with the \f(CW\*(C`bl\*(C'\fR instruction
+(the compiler will generate the much slower \f(CW\*(C`seth/add3/jl\*(C'\fR
+instruction sequence).
+.IP "\fB\-msdata=none\fR" 4
+.IX Item "-msdata=none"
+Disable use of the small data area.  Variables will be put into
+one of \fB.data\fR, \fBbss\fR, or \fB.rodata\fR (unless the
+\&\f(CW\*(C`section\*(C'\fR attribute has been specified).
+This is the default.
+.Sp
+The small data area consists of sections \fB.sdata\fR and \fB.sbss\fR.
+Objects may be explicitly put in the small data area with the
+\&\f(CW\*(C`section\*(C'\fR attribute using one of these sections.
+.IP "\fB\-msdata=sdata\fR" 4
+.IX Item "-msdata=sdata"
+Put small global and static data in the small data area, but do not
+generate special code to reference them.
+.IP "\fB\-msdata=use\fR" 4
+.IX Item "-msdata=use"
+Put small global and static data in the small data area, and generate
+special instructions to reference them.
+.IP "\fB\-G\fR \fInum\fR" 4
+.IX Item "-G num"
+Put global and static objects less than or equal to \fInum\fR bytes
+into the small data or bss sections instead of the normal data or bss
+sections.  The default value of \fInum\fR is 8.
+The \fB\-msdata\fR option must be set to one of \fBsdata\fR or \fBuse\fR
+for this option to have any effect.
+.Sp
+All modules should be compiled with the same \fB\-G\fR \fInum\fR value.
+Compiling with different values of \fInum\fR may or may not work; if it
+doesn't the linker will give an error message\-\-\-incorrect code will not be
+generated.
+.IP "\fB\-mdebug\fR" 4
+.IX Item "-mdebug"
+Makes the M32R specific code in the compiler display some statistics
+that might help in debugging programs.
+.IP "\fB\-malign\-loops\fR" 4
+.IX Item "-malign-loops"
+Align all loops to a 32\-byte boundary.
+.IP "\fB\-mno\-align\-loops\fR" 4
+.IX Item "-mno-align-loops"
+Do not enforce a 32\-byte alignment for loops.  This is the default.
+.IP "\fB\-missue\-rate=\fR\fInumber\fR" 4
+.IX Item "-missue-rate=number"
+Issue \fInumber\fR instructions per cycle.  \fInumber\fR can only be 1
+or 2.
+.IP "\fB\-mbranch\-cost=\fR\fInumber\fR" 4
+.IX Item "-mbranch-cost=number"
+\&\fInumber\fR can only be 1 or 2.  If it is 1 then branches will be
+preferred over conditional code, if it is 2, then the opposite will
+apply.
+.IP "\fB\-mflush\-trap=\fR\fInumber\fR" 4
+.IX Item "-mflush-trap=number"
+Specifies the trap number to use to flush the cache.  The default is
+12.  Valid numbers are between 0 and 15 inclusive.
+.IP "\fB\-mno\-flush\-trap\fR" 4
+.IX Item "-mno-flush-trap"
+Specifies that the cache cannot be flushed by using a trap.
+.IP "\fB\-mflush\-func=\fR\fIname\fR" 4
+.IX Item "-mflush-func=name"
+Specifies the name of the operating system function to call to flush
+the cache.  The default is \fI_flush_cache\fR, but a function call
+will only be used if a trap is not available.
+.IP "\fB\-mno\-flush\-func\fR" 4
+.IX Item "-mno-flush-func"
+Indicates that there is no \s-1OS\s0 function for flushing the cache.
+.PP
+\fI\s-1IBM\s0 \s-1RS/6000\s0 and PowerPC Options\fR
+.IX Subsection "IBM RS/6000 and PowerPC Options"
+.PP
+These \fB\-m\fR options are defined for the \s-1IBM\s0 \s-1RS/6000\s0 and PowerPC:
+.IP "\fB\-mpower\fR" 4
+.IX Item "-mpower"
+.PD 0
+.IP "\fB\-mno\-power\fR" 4
+.IX Item "-mno-power"
+.IP "\fB\-mpower2\fR" 4
+.IX Item "-mpower2"
+.IP "\fB\-mno\-power2\fR" 4
+.IX Item "-mno-power2"
+.IP "\fB\-mpowerpc\fR" 4
+.IX Item "-mpowerpc"
+.IP "\fB\-mno\-powerpc\fR" 4
+.IX Item "-mno-powerpc"
+.IP "\fB\-mpowerpc\-gpopt\fR" 4
+.IX Item "-mpowerpc-gpopt"
+.IP "\fB\-mno\-powerpc\-gpopt\fR" 4
+.IX Item "-mno-powerpc-gpopt"
+.IP "\fB\-mpowerpc\-gfxopt\fR" 4
+.IX Item "-mpowerpc-gfxopt"
+.IP "\fB\-mno\-powerpc\-gfxopt\fR" 4
+.IX Item "-mno-powerpc-gfxopt"
+.IP "\fB\-mpowerpc64\fR" 4
+.IX Item "-mpowerpc64"
+.IP "\fB\-mno\-powerpc64\fR" 4
+.IX Item "-mno-powerpc64"
+.PD
+\&\s-1GCC\s0 supports two related instruction set architectures for the
+\&\s-1RS/6000\s0 and PowerPC.  The \fI\s-1POWER\s0\fR instruction set are those
+instructions supported by the \fBrios\fR chip set used in the original
+\&\s-1RS/6000\s0 systems and the \fIPowerPC\fR instruction set is the
+architecture of the Motorola MPC5xx, MPC6xx, MPC8xx microprocessors, and
+the \s-1IBM\s0 4xx microprocessors.
+.Sp
+Neither architecture is a subset of the other.  However there is a
+large common subset of instructions supported by both.  An \s-1MQ\s0
+register is included in processors supporting the \s-1POWER\s0 architecture.
+.Sp
+You use these options to specify which instructions are available on the
+processor you are using.  The default value of these options is
+determined when configuring \s-1GCC\s0.  Specifying the
+\&\fB\-mcpu=\fR\fIcpu_type\fR overrides the specification of these
+options.  We recommend you use the \fB\-mcpu=\fR\fIcpu_type\fR option
+rather than the options listed above.
+.Sp
+The \fB\-mpower\fR option allows \s-1GCC\s0 to generate instructions that
+are found only in the \s-1POWER\s0 architecture and to use the \s-1MQ\s0 register.
+Specifying \fB\-mpower2\fR implies \fB\-power\fR and also allows \s-1GCC\s0
+to generate instructions that are present in the \s-1POWER2\s0 architecture but
+not the original \s-1POWER\s0 architecture.
+.Sp
+The \fB\-mpowerpc\fR option allows \s-1GCC\s0 to generate instructions that
+are found only in the 32\-bit subset of the PowerPC architecture.
+Specifying \fB\-mpowerpc\-gpopt\fR implies \fB\-mpowerpc\fR and also allows
+\&\s-1GCC\s0 to use the optional PowerPC architecture instructions in the
+General Purpose group, including floating-point square root.  Specifying
+\&\fB\-mpowerpc\-gfxopt\fR implies \fB\-mpowerpc\fR and also allows \s-1GCC\s0 to
+use the optional PowerPC architecture instructions in the Graphics
+group, including floating-point select.
+.Sp
+The \fB\-mpowerpc64\fR option allows \s-1GCC\s0 to generate the additional
+64\-bit instructions that are found in the full PowerPC64 architecture
+and to treat GPRs as 64\-bit, doubleword quantities.  \s-1GCC\s0 defaults to
+\&\fB\-mno\-powerpc64\fR.
+.Sp
+If you specify both \fB\-mno\-power\fR and \fB\-mno\-powerpc\fR, \s-1GCC\s0
+will use only the instructions in the common subset of both
+architectures plus some special \s-1AIX\s0 common-mode calls, and will not use
+the \s-1MQ\s0 register.  Specifying both \fB\-mpower\fR and \fB\-mpowerpc\fR
+permits \s-1GCC\s0 to use any instruction from either architecture and to
+allow use of the \s-1MQ\s0 register; specify this for the Motorola \s-1MPC601\s0.
+.IP "\fB\-mnew\-mnemonics\fR" 4
+.IX Item "-mnew-mnemonics"
+.PD 0
+.IP "\fB\-mold\-mnemonics\fR" 4
+.IX Item "-mold-mnemonics"
+.PD
+Select which mnemonics to use in the generated assembler code.  With
+\&\fB\-mnew\-mnemonics\fR, \s-1GCC\s0 uses the assembler mnemonics defined for
+the PowerPC architecture.  With \fB\-mold\-mnemonics\fR it uses the
+assembler mnemonics defined for the \s-1POWER\s0 architecture.  Instructions
+defined in only one architecture have only one mnemonic; \s-1GCC\s0 uses that
+mnemonic irrespective of which of these options is specified.
+.Sp
+\&\s-1GCC\s0 defaults to the mnemonics appropriate for the architecture in
+use.  Specifying \fB\-mcpu=\fR\fIcpu_type\fR sometimes overrides the
+value of these option.  Unless you are building a cross\-compiler, you
+should normally not specify either \fB\-mnew\-mnemonics\fR or
+\&\fB\-mold\-mnemonics\fR, but should instead accept the default.
+.IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4
+.IX Item "-mcpu=cpu_type"
+Set architecture type, register usage, choice of mnemonics, and
+instruction scheduling parameters for machine type \fIcpu_type\fR.
+Supported values for \fIcpu_type\fR are \fB401\fR, \fB403\fR,
+\&\fB405\fR, \fB405fp\fR, \fB440\fR, \fB440fp\fR, \fB505\fR,
+\&\fB601\fR, \fB602\fR, \fB603\fR, \fB603e\fR, \fB604\fR,
+\&\fB604e\fR, \fB620\fR, \fB630\fR, \fB740\fR, \fB7400\fR,
+\&\fB7450\fR, \fB750\fR, \fB801\fR, \fB821\fR, \fB823\fR,
+\&\fB860\fR, \fB970\fR, \fBcommon\fR, \fBec603e\fR, \fBG3\fR,
+\&\fBG4\fR, \fBG5\fR, \fBpower\fR, \fBpower2\fR, \fBpower3\fR,
+\&\fBpower4\fR, \fBpower5\fR, \fBpowerpc\fR, \fBpowerpc64\fR,
+\&\fBrios\fR, \fBrios1\fR, \fBrios2\fR, \fBrsc\fR, and \fBrs64a\fR.
+.Sp
+\&\fB\-mcpu=common\fR selects a completely generic processor.  Code
+generated under this option will run on any \s-1POWER\s0 or PowerPC processor.
+\&\s-1GCC\s0 will use only the instructions in the common subset of both
+architectures, and will not use the \s-1MQ\s0 register.  \s-1GCC\s0 assumes a generic
+processor model for scheduling purposes.
+.Sp
+\&\fB\-mcpu=power\fR, \fB\-mcpu=power2\fR, \fB\-mcpu=powerpc\fR, and
+\&\fB\-mcpu=powerpc64\fR specify generic \s-1POWER\s0, \s-1POWER2\s0, pure 32\-bit
+PowerPC (i.e., not \s-1MPC601\s0), and 64\-bit PowerPC architecture machine
+types, with an appropriate, generic processor model assumed for
+scheduling purposes.
+.Sp
+The other options specify a specific processor.  Code generated under
+those options will run best on that processor, and may not run at all on
+others.
+.Sp
+The \fB\-mcpu\fR options automatically enable or disable the
+following options: \fB\-maltivec\fR, \fB\-mhard\-float\fR,
+\&\fB\-mmfcrf\fR, \fB\-mmultiple\fR, \fB\-mnew\-mnemonics\fR,
+\&\fB\-mpower\fR, \fB\-mpower2\fR, \fB\-mpowerpc64\fR,
+\&\fB\-mpowerpc\-gpopt\fR, \fB\-mpowerpc\-gfxopt\fR,
+\&\fB\-mstring\fR.  The particular options set for any particular \s-1CPU\s0
+will vary between compiler versions, depending on what setting seems
+to produce optimal code for that \s-1CPU\s0; it doesn't necessarily reflect
+the actual hardware's capabilities.  If you wish to set an individual
+option to a particular value, you may specify it after the
+\&\fB\-mcpu\fR option, like \fB\-mcpu=970 \-mno\-altivec\fR.
+.Sp
+On \s-1AIX\s0, the \fB\-maltivec\fR and \fB\-mpowerpc64\fR options are
+not enabled or disabled by the \fB\-mcpu\fR option at present, since
+\&\s-1AIX\s0 does not have full support for these options.  You may still
+enable or disable them individually if you're sure it'll work in your
+environment.
+.IP "\fB\-mtune=\fR\fIcpu_type\fR" 4
+.IX Item "-mtune=cpu_type"
+Set the instruction scheduling parameters for machine type
+\&\fIcpu_type\fR, but do not set the architecture type, register usage, or
+choice of mnemonics, as \fB\-mcpu=\fR\fIcpu_type\fR would.  The same
+values for \fIcpu_type\fR are used for \fB\-mtune\fR as for
+\&\fB\-mcpu\fR.  If both are specified, the code generated will use the
+architecture, registers, and mnemonics set by \fB\-mcpu\fR, but the
+scheduling parameters set by \fB\-mtune\fR.
+.IP "\fB\-maltivec\fR" 4
+.IX Item "-maltivec"
+.PD 0
+.IP "\fB\-mno\-altivec\fR" 4
+.IX Item "-mno-altivec"
+.PD
+These switches enable or disable the use of built-in functions that
+allow access to the AltiVec instruction set.  You may also need to set
+\&\fB\-mabi=altivec\fR to adjust the current \s-1ABI\s0 with AltiVec \s-1ABI\s0
+enhancements.
+.IP "\fB\-mabi=spe\fR" 4
+.IX Item "-mabi=spe"
+Extend the current \s-1ABI\s0 with \s-1SPE\s0 \s-1ABI\s0 extensions.  This does not change
+the default \s-1ABI\s0, instead it adds the \s-1SPE\s0 \s-1ABI\s0 extensions to the current
+\&\s-1ABI\s0.
+.IP "\fB\-mabi=no\-spe\fR" 4
+.IX Item "-mabi=no-spe"
+Disable Booke \s-1SPE\s0 \s-1ABI\s0 extensions for the current \s-1ABI\s0.
+.IP "\fB\-misel=\fR\fIyes/no\fR" 4
+.IX Item "-misel=yes/no"
+.PD 0
+.IP "\fB\-misel\fR" 4
+.IX Item "-misel"
+.PD
+This switch enables or disables the generation of \s-1ISEL\s0 instructions.
+.IP "\fB\-mspe=\fR\fIyes/no\fR" 4
+.IX Item "-mspe=yes/no"
+.PD 0
+.IP "\fB\-mspe\fR" 4
+.IX Item "-mspe"
+.PD
+This switch enables or disables the generation of \s-1SPE\s0 simd
+instructions.
+.IP "\fB\-mfloat\-gprs=\fR\fIyes/no\fR" 4
+.IX Item "-mfloat-gprs=yes/no"
+.PD 0
+.IP "\fB\-mfloat\-gprs\fR" 4
+.IX Item "-mfloat-gprs"
+.PD
+This switch enables or disables the generation of floating point
+operations on the general purpose registers for architectures that
+support it.  This option is currently only available on the \s-1MPC8540\s0.
+.IP "\fB\-mfull\-toc\fR" 4
+.IX Item "-mfull-toc"
+.PD 0
+.IP "\fB\-mno\-fp\-in\-toc\fR" 4
+.IX Item "-mno-fp-in-toc"
+.IP "\fB\-mno\-sum\-in\-toc\fR" 4
+.IX Item "-mno-sum-in-toc"
+.IP "\fB\-mminimal\-toc\fR" 4
+.IX Item "-mminimal-toc"
+.PD
+Modify generation of the \s-1TOC\s0 (Table Of Contents), which is created for
+every executable file.  The \fB\-mfull\-toc\fR option is selected by
+default.  In that case, \s-1GCC\s0 will allocate at least one \s-1TOC\s0 entry for
+each unique non-automatic variable reference in your program.  \s-1GCC\s0
+will also place floating-point constants in the \s-1TOC\s0.  However, only
+16,384 entries are available in the \s-1TOC\s0.
+.Sp
+If you receive a linker error message that saying you have overflowed
+the available \s-1TOC\s0 space, you can reduce the amount of \s-1TOC\s0 space used
+with the \fB\-mno\-fp\-in\-toc\fR and \fB\-mno\-sum\-in\-toc\fR options.
+\&\fB\-mno\-fp\-in\-toc\fR prevents \s-1GCC\s0 from putting floating-point
+constants in the \s-1TOC\s0 and \fB\-mno\-sum\-in\-toc\fR forces \s-1GCC\s0 to
+generate code to calculate the sum of an address and a constant at
+run-time instead of putting that sum into the \s-1TOC\s0.  You may specify one
+or both of these options.  Each causes \s-1GCC\s0 to produce very slightly
+slower and larger code at the expense of conserving \s-1TOC\s0 space.
+.Sp
+If you still run out of space in the \s-1TOC\s0 even when you specify both of
+these options, specify \fB\-mminimal\-toc\fR instead.  This option causes
+\&\s-1GCC\s0 to make only one \s-1TOC\s0 entry for every file.  When you specify this
+option, \s-1GCC\s0 will produce code that is slower and larger but which
+uses extremely little \s-1TOC\s0 space.  You may wish to use this option
+only on files that contain less frequently executed code.
+.IP "\fB\-maix64\fR" 4
+.IX Item "-maix64"
+.PD 0
+.IP "\fB\-maix32\fR" 4
+.IX Item "-maix32"
+.PD
+Enable 64\-bit \s-1AIX\s0 \s-1ABI\s0 and calling convention: 64\-bit pointers, 64\-bit
+\&\f(CW\*(C`long\*(C'\fR type, and the infrastructure needed to support them.
+Specifying \fB\-maix64\fR implies \fB\-mpowerpc64\fR and
+\&\fB\-mpowerpc\fR, while \fB\-maix32\fR disables the 64\-bit \s-1ABI\s0 and
+implies \fB\-mno\-powerpc64\fR.  \s-1GCC\s0 defaults to \fB\-maix32\fR.
+.IP "\fB\-mxl\-call\fR" 4
+.IX Item "-mxl-call"
+.PD 0
+.IP "\fB\-mno\-xl\-call\fR" 4
+.IX Item "-mno-xl-call"
+.PD
+On \s-1AIX\s0, pass floating-point arguments to prototyped functions beyond the
+register save area (\s-1RSA\s0) on the stack in addition to argument FPRs.  The
+\&\s-1AIX\s0 calling convention was extended but not initially documented to
+handle an obscure K&R C case of calling a function that takes the
+address of its arguments with fewer arguments than declared.  \s-1AIX\s0 \s-1XL\s0
+compilers access floating point arguments which do not fit in the
+\&\s-1RSA\s0 from the stack when a subroutine is compiled without
+optimization.  Because always storing floating-point arguments on the
+stack is inefficient and rarely needed, this option is not enabled by
+default and only is necessary when calling subroutines compiled by \s-1AIX\s0
+\&\s-1XL\s0 compilers without optimization.
+.IP "\fB\-mpe\fR" 4
+.IX Item "-mpe"
+Support \fI\s-1IBM\s0 \s-1RS/6000\s0 \s-1SP\s0\fR \fIParallel Environment\fR (\s-1PE\s0).  Link an
+application written to use message passing with special startup code to
+enable the application to run.  The system must have \s-1PE\s0 installed in the
+standard location (\fI/usr/lpp/ppe.poe/\fR), or the \fIspecs\fR file
+must be overridden with the \fB\-specs=\fR option to specify the
+appropriate directory location.  The Parallel Environment does not
+support threads, so the \fB\-mpe\fR option and the \fB\-pthread\fR
+option are incompatible.
+.IP "\fB\-malign\-natural\fR" 4
+.IX Item "-malign-natural"
+.PD 0
+.IP "\fB\-malign\-power\fR" 4
+.IX Item "-malign-power"
+.PD
+On \s-1AIX\s0, Darwin, and 64\-bit PowerPC GNU/Linux, the option
+\&\fB\-malign\-natural\fR overrides the ABI-defined alignment of larger
+types, such as floating-point doubles, on their natural size-based boundary.
+The option \fB\-malign\-power\fR instructs \s-1GCC\s0 to follow the ABI-specified
+alignment rules.  \s-1GCC\s0 defaults to the standard alignment defined in the \s-1ABI\s0.
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+.PD 0
+.IP "\fB\-mhard\-float\fR" 4
+.IX Item "-mhard-float"
+.PD
+Generate code that does not use (uses) the floating-point register set.
+Software floating point emulation is provided if you use the
+\&\fB\-msoft\-float\fR option, and pass the option to \s-1GCC\s0 when linking.
+.IP "\fB\-mmultiple\fR" 4
+.IX Item "-mmultiple"
+.PD 0
+.IP "\fB\-mno\-multiple\fR" 4
+.IX Item "-mno-multiple"
+.PD
+Generate code that uses (does not use) the load multiple word
+instructions and the store multiple word instructions.  These
+instructions are generated by default on \s-1POWER\s0 systems, and not
+generated on PowerPC systems.  Do not use \fB\-mmultiple\fR on little
+endian PowerPC systems, since those instructions do not work when the
+processor is in little endian mode.  The exceptions are \s-1PPC740\s0 and
+\&\s-1PPC750\s0 which permit the instructions usage in little endian mode.
+.IP "\fB\-mstring\fR" 4
+.IX Item "-mstring"
+.PD 0
+.IP "\fB\-mno\-string\fR" 4
+.IX Item "-mno-string"
+.PD
+Generate code that uses (does not use) the load string instructions
+and the store string word instructions to save multiple registers and
+do small block moves.  These instructions are generated by default on
+\&\s-1POWER\s0 systems, and not generated on PowerPC systems.  Do not use
+\&\fB\-mstring\fR on little endian PowerPC systems, since those
+instructions do not work when the processor is in little endian mode.
+The exceptions are \s-1PPC740\s0 and \s-1PPC750\s0 which permit the instructions
+usage in little endian mode.
+.IP "\fB\-mupdate\fR" 4
+.IX Item "-mupdate"
+.PD 0
+.IP "\fB\-mno\-update\fR" 4
+.IX Item "-mno-update"
+.PD
+Generate code that uses (does not use) the load or store instructions
+that update the base register to the address of the calculated memory
+location.  These instructions are generated by default.  If you use
+\&\fB\-mno\-update\fR, there is a small window between the time that the
+stack pointer is updated and the address of the previous frame is
+stored, which means code that walks the stack frame across interrupts or
+signals may get corrupted data.
+.IP "\fB\-mfused\-madd\fR" 4
+.IX Item "-mfused-madd"
+.PD 0
+.IP "\fB\-mno\-fused\-madd\fR" 4
+.IX Item "-mno-fused-madd"
+.PD
+Generate code that uses (does not use) the floating point multiply and
+accumulate instructions.  These instructions are generated by default if
+hardware floating is used.
+.IP "\fB\-mno\-bit\-align\fR" 4
+.IX Item "-mno-bit-align"
+.PD 0
+.IP "\fB\-mbit\-align\fR" 4
+.IX Item "-mbit-align"
+.PD
+On System V.4 and embedded PowerPC systems do not (do) force structures
+and unions that contain bit-fields to be aligned to the base type of the
+bit\-field.
+.Sp
+For example, by default a structure containing nothing but 8
+\&\f(CW\*(C`unsigned\*(C'\fR bit-fields of length 1 would be aligned to a 4 byte
+boundary and have a size of 4 bytes.  By using \fB\-mno\-bit\-align\fR,
+the structure would be aligned to a 1 byte boundary and be one byte in
+size.
+.IP "\fB\-mno\-strict\-align\fR" 4
+.IX Item "-mno-strict-align"
+.PD 0
+.IP "\fB\-mstrict\-align\fR" 4
+.IX Item "-mstrict-align"
+.PD
+On System V.4 and embedded PowerPC systems do not (do) assume that
+unaligned memory references will be handled by the system.
+.IP "\fB\-mrelocatable\fR" 4
+.IX Item "-mrelocatable"
+.PD 0
+.IP "\fB\-mno\-relocatable\fR" 4
+.IX Item "-mno-relocatable"
+.PD
+On embedded PowerPC systems generate code that allows (does not allow)
+the program to be relocated to a different address at runtime.  If you
+use \fB\-mrelocatable\fR on any module, all objects linked together must
+be compiled with \fB\-mrelocatable\fR or \fB\-mrelocatable\-lib\fR.
+.IP "\fB\-mrelocatable\-lib\fR" 4
+.IX Item "-mrelocatable-lib"
+.PD 0
+.IP "\fB\-mno\-relocatable\-lib\fR" 4
+.IX Item "-mno-relocatable-lib"
+.PD
+On embedded PowerPC systems generate code that allows (does not allow)
+the program to be relocated to a different address at runtime.  Modules
+compiled with \fB\-mrelocatable\-lib\fR can be linked with either modules
+compiled without \fB\-mrelocatable\fR and \fB\-mrelocatable\-lib\fR or
+with modules compiled with the \fB\-mrelocatable\fR options.
+.IP "\fB\-mno\-toc\fR" 4
+.IX Item "-mno-toc"
+.PD 0
+.IP "\fB\-mtoc\fR" 4
+.IX Item "-mtoc"
+.PD
+On System V.4 and embedded PowerPC systems do not (do) assume that
+register 2 contains a pointer to a global area pointing to the addresses
+used in the program.
+.IP "\fB\-mlittle\fR" 4
+.IX Item "-mlittle"
+.PD 0
+.IP "\fB\-mlittle\-endian\fR" 4
+.IX Item "-mlittle-endian"
+.PD
+On System V.4 and embedded PowerPC systems compile code for the
+processor in little endian mode.  The \fB\-mlittle\-endian\fR option is
+the same as \fB\-mlittle\fR.
+.IP "\fB\-mbig\fR" 4
+.IX Item "-mbig"
+.PD 0
+.IP "\fB\-mbig\-endian\fR" 4
+.IX Item "-mbig-endian"
+.PD
+On System V.4 and embedded PowerPC systems compile code for the
+processor in big endian mode.  The \fB\-mbig\-endian\fR option is
+the same as \fB\-mbig\fR.
+.IP "\fB\-mdynamic\-no\-pic\fR" 4
+.IX Item "-mdynamic-no-pic"
+On Darwin and Mac \s-1OS\s0 X systems, compile code so that it is not
+relocatable, but that its external references are relocatable.  The
+resulting code is suitable for applications, but not shared
+libraries.
+.IP "\fB\-mprioritize\-restricted\-insns=\fR\fIpriority\fR" 4
+.IX Item "-mprioritize-restricted-insns=priority"
+This option controls the priority that is assigned to
+dispatch-slot restricted instructions during the second scheduling
+pass.  The argument \fIpriority\fR takes the value \fI0/1/2\fR to assign
+\&\fIno/highest/second\-highest\fR priority to dispatch slot restricted
+instructions.
+.IP "\fB\-msched\-costly\-dep=\fR\fIdependence_type\fR" 4
+.IX Item "-msched-costly-dep=dependence_type"
+This option controls which dependences are considered costly
+by the target during instruction scheduling.  The argument
+\&\fIdependence_type\fR takes one of the following values:
+\&\fIno\fR: no dependence is costly,
+\&\fIall\fR: all dependences are costly,
+\&\fItrue_store_to_load\fR: a true dependence from store to load is costly,
+\&\fIstore_to_load\fR: any dependence from store to load is costly,
+\&\fInumber\fR: any dependence which latency >= \fInumber\fR is costly.
+.IP "\fB\-minsert\-sched\-nops=\fR\fIscheme\fR" 4
+.IX Item "-minsert-sched-nops=scheme"
+This option controls which nop insertion scheme will be used during
+the second scheduling pass. The argument \fIscheme\fR takes one of the
+following values:
+\&\fIno\fR: Don't insert nops.
+\&\fIpad\fR: Pad with nops any dispatch group which has vacant issue slots,
+according to the scheduler's grouping.
+\&\fIregroup_exact\fR: Insert nops to force costly dependent insns into
+separate groups.  Insert exactly as many nops as needed to force an insn
+to a new group, according to the estimated processor grouping.
+\&\fInumber\fR: Insert nops to force costly dependent insns into
+separate groups.  Insert \fInumber\fR nops to force an insn to a new group.
+.IP "\fB\-mcall\-sysv\fR" 4
+.IX Item "-mcall-sysv"
+On System V.4 and embedded PowerPC systems compile code using calling
+conventions that adheres to the March 1995 draft of the System V
+Application Binary Interface, PowerPC processor supplement.  This is the
+default unless you configured \s-1GCC\s0 using \fBpowerpc\-*\-eabiaix\fR.
+.IP "\fB\-mcall\-sysv\-eabi\fR" 4
+.IX Item "-mcall-sysv-eabi"
+Specify both \fB\-mcall\-sysv\fR and \fB\-meabi\fR options.
+.IP "\fB\-mcall\-sysv\-noeabi\fR" 4
+.IX Item "-mcall-sysv-noeabi"
+Specify both \fB\-mcall\-sysv\fR and \fB\-mno\-eabi\fR options.
+.IP "\fB\-mcall\-solaris\fR" 4
+.IX Item "-mcall-solaris"
+On System V.4 and embedded PowerPC systems compile code for the Solaris
+operating system.
+.IP "\fB\-mcall\-linux\fR" 4
+.IX Item "-mcall-linux"
+On System V.4 and embedded PowerPC systems compile code for the
+Linux-based \s-1GNU\s0 system.
+.IP "\fB\-mcall\-gnu\fR" 4
+.IX Item "-mcall-gnu"
+On System V.4 and embedded PowerPC systems compile code for the
+Hurd-based \s-1GNU\s0 system.
+.IP "\fB\-mcall\-netbsd\fR" 4
+.IX Item "-mcall-netbsd"
+On System V.4 and embedded PowerPC systems compile code for the
+NetBSD operating system.
+.IP "\fB\-maix\-struct\-return\fR" 4
+.IX Item "-maix-struct-return"
+Return all structures in memory (as specified by the \s-1AIX\s0 \s-1ABI\s0).
+.IP "\fB\-msvr4\-struct\-return\fR" 4
+.IX Item "-msvr4-struct-return"
+Return structures smaller than 8 bytes in registers (as specified by the
+\&\s-1SVR4\s0 \s-1ABI\s0).
+.IP "\fB\-mabi=altivec\fR" 4
+.IX Item "-mabi=altivec"
+Extend the current \s-1ABI\s0 with AltiVec \s-1ABI\s0 extensions.  This does not
+change the default \s-1ABI\s0, instead it adds the AltiVec \s-1ABI\s0 extensions to
+the current \s-1ABI\s0.
+.IP "\fB\-mabi=no\-altivec\fR" 4
+.IX Item "-mabi=no-altivec"
+Disable AltiVec \s-1ABI\s0 extensions for the current \s-1ABI\s0.
+.IP "\fB\-mprototype\fR" 4
+.IX Item "-mprototype"
+.PD 0
+.IP "\fB\-mno\-prototype\fR" 4
+.IX Item "-mno-prototype"
+.PD
+On System V.4 and embedded PowerPC systems assume that all calls to
+variable argument functions are properly prototyped.  Otherwise, the
+compiler must insert an instruction before every non prototyped call to
+set or clear bit 6 of the condition code register (\fI\s-1CR\s0\fR) to
+indicate whether floating point values were passed in the floating point
+registers in case the function takes a variable arguments.  With
+\&\fB\-mprototype\fR, only calls to prototyped variable argument functions
+will set or clear the bit.
+.IP "\fB\-msim\fR" 4
+.IX Item "-msim"
+On embedded PowerPC systems, assume that the startup module is called
+\&\fIsim\-crt0.o\fR and that the standard C libraries are \fIlibsim.a\fR and
+\&\fIlibc.a\fR.  This is the default for \fBpowerpc\-*\-eabisim\fR.
+configurations.
+.IP "\fB\-mmvme\fR" 4
+.IX Item "-mmvme"
+On embedded PowerPC systems, assume that the startup module is called
+\&\fIcrt0.o\fR and the standard C libraries are \fIlibmvme.a\fR and
+\&\fIlibc.a\fR.
+.IP "\fB\-mads\fR" 4
+.IX Item "-mads"
+On embedded PowerPC systems, assume that the startup module is called
+\&\fIcrt0.o\fR and the standard C libraries are \fIlibads.a\fR and
+\&\fIlibc.a\fR.
+.IP "\fB\-myellowknife\fR" 4
+.IX Item "-myellowknife"
+On embedded PowerPC systems, assume that the startup module is called
+\&\fIcrt0.o\fR and the standard C libraries are \fIlibyk.a\fR and
+\&\fIlibc.a\fR.
+.IP "\fB\-mvxworks\fR" 4
+.IX Item "-mvxworks"
+On System V.4 and embedded PowerPC systems, specify that you are
+compiling for a VxWorks system.
+.IP "\fB\-mwindiss\fR" 4
+.IX Item "-mwindiss"
+Specify that you are compiling for the WindISS simulation environment.
+.IP "\fB\-memb\fR" 4
+.IX Item "-memb"
+On embedded PowerPC systems, set the \fI\s-1PPC_EMB\s0\fR bit in the \s-1ELF\s0 flags
+header to indicate that \fBeabi\fR extended relocations are used.
+.IP "\fB\-meabi\fR" 4
+.IX Item "-meabi"
+.PD 0
+.IP "\fB\-mno\-eabi\fR" 4
+.IX Item "-mno-eabi"
+.PD
+On System V.4 and embedded PowerPC systems do (do not) adhere to the
+Embedded Applications Binary Interface (eabi) which is a set of
+modifications to the System V.4 specifications.  Selecting \fB\-meabi\fR
+means that the stack is aligned to an 8 byte boundary, a function
+\&\f(CW\*(C`_\|_eabi\*(C'\fR is called to from \f(CW\*(C`main\*(C'\fR to set up the eabi
+environment, and the \fB\-msdata\fR option can use both \f(CW\*(C`r2\*(C'\fR and
+\&\f(CW\*(C`r13\*(C'\fR to point to two separate small data areas.  Selecting
+\&\fB\-mno\-eabi\fR means that the stack is aligned to a 16 byte boundary,
+do not call an initialization function from \f(CW\*(C`main\*(C'\fR, and the
+\&\fB\-msdata\fR option will only use \f(CW\*(C`r13\*(C'\fR to point to a single
+small data area.  The \fB\-meabi\fR option is on by default if you
+configured \s-1GCC\s0 using one of the \fBpowerpc*\-*\-eabi*\fR options.
+.IP "\fB\-msdata=eabi\fR" 4
+.IX Item "-msdata=eabi"
+On System V.4 and embedded PowerPC systems, put small initialized
+\&\f(CW\*(C`const\*(C'\fR global and static data in the \fB.sdata2\fR section, which
+is pointed to by register \f(CW\*(C`r2\*(C'\fR.  Put small initialized
+non\-\f(CW\*(C`const\*(C'\fR global and static data in the \fB.sdata\fR section,
+which is pointed to by register \f(CW\*(C`r13\*(C'\fR.  Put small uninitialized
+global and static data in the \fB.sbss\fR section, which is adjacent to
+the \fB.sdata\fR section.  The \fB\-msdata=eabi\fR option is
+incompatible with the \fB\-mrelocatable\fR option.  The
+\&\fB\-msdata=eabi\fR option also sets the \fB\-memb\fR option.
+.IP "\fB\-msdata=sysv\fR" 4
+.IX Item "-msdata=sysv"
+On System V.4 and embedded PowerPC systems, put small global and static
+data in the \fB.sdata\fR section, which is pointed to by register
+\&\f(CW\*(C`r13\*(C'\fR.  Put small uninitialized global and static data in the
+\&\fB.sbss\fR section, which is adjacent to the \fB.sdata\fR section.
+The \fB\-msdata=sysv\fR option is incompatible with the
+\&\fB\-mrelocatable\fR option.
+.IP "\fB\-msdata=default\fR" 4
+.IX Item "-msdata=default"
+.PD 0
+.IP "\fB\-msdata\fR" 4
+.IX Item "-msdata"
+.PD
+On System V.4 and embedded PowerPC systems, if \fB\-meabi\fR is used,
+compile code the same as \fB\-msdata=eabi\fR, otherwise compile code the
+same as \fB\-msdata=sysv\fR.
+.IP "\fB\-msdata\-data\fR" 4
+.IX Item "-msdata-data"
+On System V.4 and embedded PowerPC systems, put small global and static
+data in the \fB.sdata\fR section.  Put small uninitialized global and
+static data in the \fB.sbss\fR section.  Do not use register \f(CW\*(C`r13\*(C'\fR
+to address small data however.  This is the default behavior unless
+other \fB\-msdata\fR options are used.
+.IP "\fB\-msdata=none\fR" 4
+.IX Item "-msdata=none"
+.PD 0
+.IP "\fB\-mno\-sdata\fR" 4
+.IX Item "-mno-sdata"
+.PD
+On embedded PowerPC systems, put all initialized global and static data
+in the \fB.data\fR section, and all uninitialized data in the
+\&\fB.bss\fR section.
+.IP "\fB\-G\fR \fInum\fR" 4
+.IX Item "-G num"
+On embedded PowerPC systems, put global and static items less than or
+equal to \fInum\fR bytes into the small data or bss sections instead of
+the normal data or bss section.  By default, \fInum\fR is 8.  The
+\&\fB\-G\fR \fInum\fR switch is also passed to the linker.
+All modules should be compiled with the same \fB\-G\fR \fInum\fR value.
+.IP "\fB\-mregnames\fR" 4
+.IX Item "-mregnames"
+.PD 0
+.IP "\fB\-mno\-regnames\fR" 4
+.IX Item "-mno-regnames"
+.PD
+On System V.4 and embedded PowerPC systems do (do not) emit register
+names in the assembly language output using symbolic forms.
+.IP "\fB\-mlongcall\fR" 4
+.IX Item "-mlongcall"
+.PD 0
+.IP "\fB\-mno\-longcall\fR" 4
+.IX Item "-mno-longcall"
+.PD
+Default to making all function calls via pointers, so that functions
+which reside further than 64 megabytes (67,108,864 bytes) from the
+current location can be called.  This setting can be overridden by the
+\&\f(CW\*(C`shortcall\*(C'\fR function attribute, or by \f(CW\*(C`#pragma longcall(0)\*(C'\fR.
+.Sp
+Some linkers are capable of detecting out-of-range calls and generating
+glue code on the fly.  On these systems, long calls are unnecessary and
+generate slower code.  As of this writing, the \s-1AIX\s0 linker can do this,
+as can the \s-1GNU\s0 linker for PowerPC/64.  It is planned to add this feature
+to the \s-1GNU\s0 linker for 32\-bit PowerPC systems as well.
+.Sp
+On Mach-O (Darwin) systems, this option directs the compiler emit to
+the glue for every direct call, and the Darwin linker decides whether
+to use or discard it.
+.Sp
+In the future, we may cause \s-1GCC\s0 to ignore all longcall specifications
+when the linker is known to generate glue.
+.IP "\fB\-pthread\fR" 4
+.IX Item "-pthread"
+Adds support for multithreading with the \fIpthreads\fR library.
+This option sets flags for both the preprocessor and linker.
+.PP
+\fIDarwin Options\fR
+.IX Subsection "Darwin Options"
+.PP
+These options are defined for all architectures running the Darwin operating
+system.  They are useful for compatibility with other Mac \s-1OS\s0 compilers.
+.IP "\fB\-all_load\fR" 4
+.IX Item "-all_load"
+Loads all members of static archive libraries.
+See man \fIld\fR\|(1) for more information.
+.IP "\fB\-arch_errors_fatal\fR" 4
+.IX Item "-arch_errors_fatal"
+Cause the errors having to do with files that have the wrong architecture
+to be fatal.
+.IP "\fB\-bind_at_load\fR" 4
+.IX Item "-bind_at_load"
+Causes the output file to be marked such that the dynamic linker will
+bind all undefined references when the file is loaded or launched.
+.IP "\fB\-bundle\fR" 4
+.IX Item "-bundle"
+Produce a Mach-o bundle format file.
+See man \fIld\fR\|(1) for more information.
+.IP "\fB\-bundle_loader\fR \fIexecutable\fR" 4
+.IX Item "-bundle_loader executable"
+This specifies the \fIexecutable\fR that will be loading the build
+output file being linked. See man \fIld\fR\|(1) for more information.
+.IP "\fB\-allowable_client\fR  \fIclient_name\fR" 4
+.IX Item "-allowable_client  client_name"
+.PD 0
+.IP "\fB\-arch_only\fR" 4
+.IX Item "-arch_only"
+.IP "\fB\-client_name\fR" 4
+.IX Item "-client_name"
+.IP "\fB\-compatibility_version\fR" 4
+.IX Item "-compatibility_version"
+.IP "\fB\-current_version\fR" 4
+.IX Item "-current_version"
+.IP "\fB\-dependency\-file\fR" 4
+.IX Item "-dependency-file"
+.IP "\fB\-dylib_file\fR" 4
+.IX Item "-dylib_file"
+.IP "\fB\-dylinker_install_name\fR" 4
+.IX Item "-dylinker_install_name"
+.IP "\fB\-dynamic\fR" 4
+.IX Item "-dynamic"
+.IP "\fB\-dynamiclib\fR" 4
+.IX Item "-dynamiclib"
+.IP "\fB\-exported_symbols_list\fR" 4
+.IX Item "-exported_symbols_list"
+.IP "\fB\-filelist\fR" 4
+.IX Item "-filelist"
+.IP "\fB\-flat_namespace\fR" 4
+.IX Item "-flat_namespace"
+.IP "\fB\-force_cpusubtype_ALL\fR" 4
+.IX Item "-force_cpusubtype_ALL"
+.IP "\fB\-force_flat_namespace\fR" 4
+.IX Item "-force_flat_namespace"
+.IP "\fB\-headerpad_max_install_names\fR" 4
+.IX Item "-headerpad_max_install_names"
+.IP "\fB\-image_base\fR" 4
+.IX Item "-image_base"
+.IP "\fB\-init\fR" 4
+.IX Item "-init"
+.IP "\fB\-install_name\fR" 4
+.IX Item "-install_name"
+.IP "\fB\-keep_private_externs\fR" 4
+.IX Item "-keep_private_externs"
+.IP "\fB\-multi_module\fR" 4
+.IX Item "-multi_module"
+.IP "\fB\-multiply_defined\fR" 4
+.IX Item "-multiply_defined"
+.IP "\fB\-multiply_defined_unused\fR" 4
+.IX Item "-multiply_defined_unused"
+.IP "\fB\-noall_load\fR" 4
+.IX Item "-noall_load"
+.IP "\fB\-nofixprebinding\fR" 4
+.IX Item "-nofixprebinding"
+.IP "\fB\-nomultidefs\fR" 4
+.IX Item "-nomultidefs"
+.IP "\fB\-noprebind\fR" 4
+.IX Item "-noprebind"
+.IP "\fB\-noseglinkedit\fR" 4
+.IX Item "-noseglinkedit"
+.IP "\fB\-pagezero_size\fR" 4
+.IX Item "-pagezero_size"
+.IP "\fB\-prebind\fR" 4
+.IX Item "-prebind"
+.IP "\fB\-prebind_all_twolevel_modules\fR" 4
+.IX Item "-prebind_all_twolevel_modules"
+.IP "\fB\-private_bundle\fR" 4
+.IX Item "-private_bundle"
+.IP "\fB\-read_only_relocs\fR" 4
+.IX Item "-read_only_relocs"
+.IP "\fB\-sectalign\fR" 4
+.IX Item "-sectalign"
+.IP "\fB\-sectobjectsymbols\fR" 4
+.IX Item "-sectobjectsymbols"
+.IP "\fB\-whyload\fR" 4
+.IX Item "-whyload"
+.IP "\fB\-seg1addr\fR" 4
+.IX Item "-seg1addr"
+.IP "\fB\-sectcreate\fR" 4
+.IX Item "-sectcreate"
+.IP "\fB\-sectobjectsymbols\fR" 4
+.IX Item "-sectobjectsymbols"
+.IP "\fB\-sectorder\fR" 4
+.IX Item "-sectorder"
+.IP "\fB\-seg_addr_table\fR" 4
+.IX Item "-seg_addr_table"
+.IP "\fB\-seg_addr_table_filename\fR" 4
+.IX Item "-seg_addr_table_filename"
+.IP "\fB\-seglinkedit\fR" 4
+.IX Item "-seglinkedit"
+.IP "\fB\-segprot\fR" 4
+.IX Item "-segprot"
+.IP "\fB\-segs_read_only_addr\fR" 4
+.IX Item "-segs_read_only_addr"
+.IP "\fB\-segs_read_write_addr\fR" 4
+.IX Item "-segs_read_write_addr"
+.IP "\fB\-single_module\fR" 4
+.IX Item "-single_module"
+.IP "\fB\-static\fR" 4
+.IX Item "-static"
+.IP "\fB\-sub_library\fR" 4
+.IX Item "-sub_library"
+.IP "\fB\-sub_umbrella\fR" 4
+.IX Item "-sub_umbrella"
+.IP "\fB\-twolevel_namespace\fR" 4
+.IX Item "-twolevel_namespace"
+.IP "\fB\-umbrella\fR" 4
+.IX Item "-umbrella"
+.IP "\fB\-undefined\fR" 4
+.IX Item "-undefined"
+.IP "\fB\-unexported_symbols_list\fR" 4
+.IX Item "-unexported_symbols_list"
+.IP "\fB\-weak_reference_mismatches\fR" 4
+.IX Item "-weak_reference_mismatches"
+.IP "\fB\-whatsloaded\fR" 4
+.IX Item "-whatsloaded"
+.PD
+These options are available for Darwin linker. Darwin linker man page
+describes them in detail.
+.PP
+\fI\s-1MIPS\s0 Options\fR
+.IX Subsection "MIPS Options"
+.IP "\fB\-EB\fR" 4
+.IX Item "-EB"
+Generate big-endian code.
+.IP "\fB\-EL\fR" 4
+.IX Item "-EL"
+Generate little-endian code.  This is the default for \fBmips*el\-*\-*\fR
+configurations.
+.IP "\fB\-march=\fR\fIarch\fR" 4
+.IX Item "-march=arch"
+Generate code that will run on \fIarch\fR, which can be the name of a
+generic \s-1MIPS\s0 \s-1ISA\s0, or the name of a particular processor.
+The \s-1ISA\s0 names are:
+\&\fBmips1\fR, \fBmips2\fR, \fBmips3\fR, \fBmips4\fR,
+\&\fBmips32\fR, \fBmips32r2\fR, and \fBmips64\fR.
+The processor names are:
+\&\fB4kc\fR, \fB4kp\fR, \fB5kc\fR, \fB20kc\fR,
+\&\fBm4k\fR,
+\&\fBr2000\fR, \fBr3000\fR, \fBr3900\fR, \fBr4000\fR, \fBr4400\fR,
+\&\fBr4600\fR, \fBr4650\fR, \fBr6000\fR, \fBr8000\fR, \fBrm7000\fR,
+\&\fBrm9000\fR,
+\&\fBorion\fR,
+\&\fBsb1\fR,
+\&\fBvr4100\fR, \fBvr4111\fR, \fBvr4120\fR, \fBvr4300\fR,
+\&\fBvr5000\fR, \fBvr5400\fR and \fBvr5500\fR.
+The special value \fBfrom-abi\fR selects the
+most compatible architecture for the selected \s-1ABI\s0 (that is,
+\&\fBmips1\fR for 32\-bit ABIs and \fBmips3\fR for 64\-bit ABIs).
+.Sp
+In processor names, a final \fB000\fR can be abbreviated as \fBk\fR
+(for example, \fB\-march=r2k\fR).  Prefixes are optional, and
+\&\fBvr\fR may be written \fBr\fR.
+.Sp
+\&\s-1GCC\s0 defines two macros based on the value of this option.  The first
+is \fB_MIPS_ARCH\fR, which gives the name of target architecture, as
+a string.  The second has the form \fB_MIPS_ARCH_\fR\fIfoo\fR,
+where \fIfoo\fR is the capitalized value of \fB_MIPS_ARCH\fR.
+For example, \fB\-march=r2000\fR will set \fB_MIPS_ARCH\fR
+to \fB\*(L"r2000\*(R"\fR and define the macro \fB_MIPS_ARCH_R2000\fR.
+.Sp
+Note that the \fB_MIPS_ARCH\fR macro uses the processor names given
+above.  In other words, it will have the full prefix and will not
+abbreviate \fB000\fR as \fBk\fR.  In the case of \fBfrom-abi\fR,
+the macro names the resolved architecture (either \fB\*(L"mips1\*(R"\fR or
+\&\fB\*(L"mips3\*(R"\fR).  It names the default architecture when no
+\&\fB\-march\fR option is given.
+.IP "\fB\-mtune=\fR\fIarch\fR" 4
+.IX Item "-mtune=arch"
+Optimize for \fIarch\fR.  Among other things, this option controls
+the way instructions are scheduled, and the perceived cost of arithmetic
+operations.  The list of \fIarch\fR values is the same as for
+\&\fB\-march\fR.
+.Sp
+When this option is not used, \s-1GCC\s0 will optimize for the processor
+specified by \fB\-march\fR.  By using \fB\-march\fR and
+\&\fB\-mtune\fR together, it is possible to generate code that will
+run on a family of processors, but optimize the code for one
+particular member of that family.
+.Sp
+\&\fB\-mtune\fR defines the macros \fB_MIPS_TUNE\fR and
+\&\fB_MIPS_TUNE_\fR\fIfoo\fR, which work in the same way as the
+\&\fB\-march\fR ones described above.
+.IP "\fB\-mips1\fR" 4
+.IX Item "-mips1"
+Equivalent to \fB\-march=mips1\fR.
+.IP "\fB\-mips2\fR" 4
+.IX Item "-mips2"
+Equivalent to \fB\-march=mips2\fR.
+.IP "\fB\-mips3\fR" 4
+.IX Item "-mips3"
+Equivalent to \fB\-march=mips3\fR.
+.IP "\fB\-mips4\fR" 4
+.IX Item "-mips4"
+Equivalent to \fB\-march=mips4\fR.
+.IP "\fB\-mips32\fR" 4
+.IX Item "-mips32"
+Equivalent to \fB\-march=mips32\fR.
+.IP "\fB\-mips32r2\fR" 4
+.IX Item "-mips32r2"
+Equivalent to \fB\-march=mips32r2\fR.
+.IP "\fB\-mips64\fR" 4
+.IX Item "-mips64"
+Equivalent to \fB\-march=mips64\fR.
+.IP "\fB\-mips16\fR" 4
+.IX Item "-mips16"
+.PD 0
+.IP "\fB\-mno\-mips16\fR" 4
+.IX Item "-mno-mips16"
+.PD
+Use (do not use) the \s-1MIPS16\s0 \s-1ISA\s0.
+.IP "\fB\-mabi=32\fR" 4
+.IX Item "-mabi=32"
+.PD 0
+.IP "\fB\-mabi=o64\fR" 4
+.IX Item "-mabi=o64"
+.IP "\fB\-mabi=n32\fR" 4
+.IX Item "-mabi=n32"
+.IP "\fB\-mabi=64\fR" 4
+.IX Item "-mabi=64"
+.IP "\fB\-mabi=eabi\fR" 4
+.IX Item "-mabi=eabi"
+.PD
+Generate code for the given \s-1ABI\s0.
+.Sp
+Note that the \s-1EABI\s0 has a 32\-bit and a 64\-bit variant.  \s-1GCC\s0 normally
+generates 64\-bit code when you select a 64\-bit architecture, but you
+can use \fB\-mgp32\fR to get 32\-bit code instead.
+.IP "\fB\-mabicalls\fR" 4
+.IX Item "-mabicalls"
+.PD 0
+.IP "\fB\-mno\-abicalls\fR" 4
+.IX Item "-mno-abicalls"
+.PD
+Generate (do not generate) SVR4\-style position-independent code.
+\&\fB\-mabicalls\fR is the default for SVR4\-based systems.
+.IP "\fB\-mxgot\fR" 4
+.IX Item "-mxgot"
+.PD 0
+.IP "\fB\-mno\-xgot\fR" 4
+.IX Item "-mno-xgot"
+.PD
+Lift (do not lift) the usual restrictions on the size of the global
+offset table.
+.Sp
+\&\s-1GCC\s0 normally uses a single instruction to load values from the \s-1GOT\s0.
+While this is relatively efficient, it will only work if the \s-1GOT\s0
+is smaller than about 64k.  Anything larger will cause the linker
+to report an error such as:
+.Sp
+.Vb 1
+\&        relocation truncated to fit: R_MIPS_GOT16 foobar
+.Ve
+.Sp
+If this happens, you should recompile your code with \fB\-mxgot\fR.
+It should then work with very large GOTs, although it will also be
+less efficient, since it will take three instructions to fetch the
+value of a global symbol.
+.Sp
+Note that some linkers can create multiple GOTs.  If you have such a
+linker, you should only need to use \fB\-mxgot\fR when a single object
+file accesses more than 64k's worth of \s-1GOT\s0 entries.  Very few do.
+.Sp
+These options have no effect unless \s-1GCC\s0 is generating position
+independent code.
+.IP "\fB\-membedded\-pic\fR" 4
+.IX Item "-membedded-pic"
+.PD 0
+.IP "\fB\-mno\-embedded\-pic\fR" 4
+.IX Item "-mno-embedded-pic"
+.PD
+Generate (do not generate) position-independent code suitable for some
+embedded systems.  All calls are made using \s-1PC\s0 relative addresses, and
+all data is addressed using the \f(CW$gp\fR register.  No more than 65536
+bytes of global data may be used.  This requires \s-1GNU\s0 as and \s-1GNU\s0 ld,
+which do most of the work.
+.IP "\fB\-mgp32\fR" 4
+.IX Item "-mgp32"
+Assume that general-purpose registers are 32 bits wide.
+.IP "\fB\-mgp64\fR" 4
+.IX Item "-mgp64"
+Assume that general-purpose registers are 64 bits wide.
+.IP "\fB\-mfp32\fR" 4
+.IX Item "-mfp32"
+Assume that floating-point registers are 32 bits wide.
+.IP "\fB\-mfp64\fR" 4
+.IX Item "-mfp64"
+Assume that floating-point registers are 64 bits wide.
+.IP "\fB\-mhard\-float\fR" 4
+.IX Item "-mhard-float"
+Use floating-point coprocessor instructions.
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+Do not use floating-point coprocessor instructions.  Implement
+floating-point calculations using library calls instead.
+.IP "\fB\-msingle\-float\fR" 4
+.IX Item "-msingle-float"
+Assume that the floating-point coprocessor only supports single-precision
+operations.
+.IP "\fB\-mdouble\-float\fR" 4
+.IX Item "-mdouble-float"
+Assume that the floating-point coprocessor supports double-precision
+operations.  This is the default.
+.IP "\fB\-mint64\fR" 4
+.IX Item "-mint64"
+Force \f(CW\*(C`int\*(C'\fR and \f(CW\*(C`long\*(C'\fR types to be 64 bits wide.  See
+\&\fB\-mlong32\fR for an explanation of the default and the way
+that the pointer size is determined.
+.IP "\fB\-mlong64\fR" 4
+.IX Item "-mlong64"
+Force \f(CW\*(C`long\*(C'\fR types to be 64 bits wide.  See \fB\-mlong32\fR for
+an explanation of the default and the way that the pointer size is
+determined.
+.IP "\fB\-mlong32\fR" 4
+.IX Item "-mlong32"
+Force \f(CW\*(C`long\*(C'\fR, \f(CW\*(C`int\*(C'\fR, and pointer types to be 32 bits wide.
+.Sp
+The default size of \f(CW\*(C`int\*(C'\fRs, \f(CW\*(C`long\*(C'\fRs and pointers depends on
+the \s-1ABI\s0.  All the supported ABIs use 32\-bit \f(CW\*(C`int\*(C'\fRs.  The n64 \s-1ABI\s0
+uses 64\-bit \f(CW\*(C`long\*(C'\fRs, as does the 64\-bit \s-1EABI\s0; the others use
+32\-bit \f(CW\*(C`long\*(C'\fRs.  Pointers are the same size as \f(CW\*(C`long\*(C'\fRs,
+or the same size as integer registers, whichever is smaller.
+.IP "\fB\-G\fR \fInum\fR" 4
+.IX Item "-G num"
+Put global and static items less than or equal to \fInum\fR bytes into
+the small data or bss section instead of the normal data or bss section.
+This allows the data to be accessed using a single instruction.
+.Sp
+All modules should be compiled with the same \fB\-G\fR \fInum\fR
+value.
+.IP "\fB\-membedded\-data\fR" 4
+.IX Item "-membedded-data"
+.PD 0
+.IP "\fB\-mno\-embedded\-data\fR" 4
+.IX Item "-mno-embedded-data"
+.PD
+Allocate variables to the read-only data section first if possible, then
+next in the small data section if possible, otherwise in data.  This gives
+slightly slower code than the default, but reduces the amount of \s-1RAM\s0 required
+when executing, and thus may be preferred for some embedded systems.
+.IP "\fB\-muninit\-const\-in\-rodata\fR" 4
+.IX Item "-muninit-const-in-rodata"
+.PD 0
+.IP "\fB\-mno\-uninit\-const\-in\-rodata\fR" 4
+.IX Item "-mno-uninit-const-in-rodata"
+.PD
+Put uninitialized \f(CW\*(C`const\*(C'\fR variables in the read-only data section.
+This option is only meaningful in conjunction with \fB\-membedded\-data\fR.
+.IP "\fB\-msplit\-addresses\fR" 4
+.IX Item "-msplit-addresses"
+.PD 0
+.IP "\fB\-mno\-split\-addresses\fR" 4
+.IX Item "-mno-split-addresses"
+.PD
+Enable (disable) use of the \f(CW\*(C`%hi()\*(C'\fR and \f(CW\*(C`%lo()\*(C'\fR assembler
+relocation operators.  This option has been superceded by
+\&\fB\-mexplicit\-relocs\fR but is retained for backwards compatibility.
+.IP "\fB\-mexplicit\-relocs\fR" 4
+.IX Item "-mexplicit-relocs"
+.PD 0
+.IP "\fB\-mno\-explicit\-relocs\fR" 4
+.IX Item "-mno-explicit-relocs"
+.PD
+Use (do not use) assembler relocation operators when dealing with symbolic
+addresses.  The alternative, selected by \fB\-mno\-explicit\-relocs\fR,
+is to use assembler macros instead.
+.Sp
+\&\fB\-mexplicit\-relocs\fR is usually the default if \s-1GCC\s0 was
+configured to use an assembler that supports relocation operators.
+However, there are two exceptions:
+.RS 4
+.IP "\(bu" 4
+\&\s-1GCC\s0 is not yet able to generate explicit relocations for the combination
+of \fB\-mabi=64\fR and \fB\-mno\-abicalls\fR.  This will be addressed
+in a future release.
+.IP "\(bu" 4
+The combination of \fB\-mabicalls\fR and \fB\-fno\-unit\-at\-a\-time\fR
+implies \fB\-mno\-explicit\-relocs\fR unless explicitly overridden.
+This is because, when generating abicalls, the choice of relocation
+depends on whether a symbol is local or global.  In some rare cases,
+\&\s-1GCC\s0 will not be able to decide this until the whole compilation unit
+has been read.
+.RE
+.RS 4
+.RE
+.IP "\fB\-mrnames\fR" 4
+.IX Item "-mrnames"
+.PD 0
+.IP "\fB\-mno\-rnames\fR" 4
+.IX Item "-mno-rnames"
+.PD
+Generate (do not generate) code that refers to registers using their
+software names.  The default is \fB\-mno\-rnames\fR, which tells \s-1GCC\s0
+to use hardware names like \fB$4\fR instead of software names like
+\&\fBa0\fR.  The only assembler known to support \fB\-rnames\fR is
+the Algorithmics assembler.
+.IP "\fB\-mcheck\-zero\-division\fR" 4
+.IX Item "-mcheck-zero-division"
+.PD 0
+.IP "\fB\-mno\-check\-zero\-division\fR" 4
+.IX Item "-mno-check-zero-division"
+.PD
+Trap (do not trap) on integer division by zero.  The default is
+\&\fB\-mcheck\-zero\-division\fR.
+.IP "\fB\-mmemcpy\fR" 4
+.IX Item "-mmemcpy"
+.PD 0
+.IP "\fB\-mno\-memcpy\fR" 4
+.IX Item "-mno-memcpy"
+.PD
+Force (do not force) the use of \f(CW\*(C`memcpy()\*(C'\fR for non-trivial block
+moves.  The default is \fB\-mno\-memcpy\fR, which allows \s-1GCC\s0 to inline
+most constant-sized copies.
+.IP "\fB\-mlong\-calls\fR" 4
+.IX Item "-mlong-calls"
+.PD 0
+.IP "\fB\-mno\-long\-calls\fR" 4
+.IX Item "-mno-long-calls"
+.PD
+Disable (do not disable) use of the \f(CW\*(C`jal\*(C'\fR instruction.  Calling
+functions using \f(CW\*(C`jal\*(C'\fR is more efficient but requires the caller
+and callee to be in the same 256 megabyte segment.
+.Sp
+This option has no effect on abicalls code.  The default is
+\&\fB\-mno\-long\-calls\fR.
+.IP "\fB\-mmad\fR" 4
+.IX Item "-mmad"
+.PD 0
+.IP "\fB\-mno\-mad\fR" 4
+.IX Item "-mno-mad"
+.PD
+Enable (disable) use of the \f(CW\*(C`mad\*(C'\fR, \f(CW\*(C`madu\*(C'\fR and \f(CW\*(C`mul\*(C'\fR
+instructions, as provided by the R4650 \s-1ISA\s0.
+.IP "\fB\-mfused\-madd\fR" 4
+.IX Item "-mfused-madd"
+.PD 0
+.IP "\fB\-mno\-fused\-madd\fR" 4
+.IX Item "-mno-fused-madd"
+.PD
+Enable (disable) use of the floating point multiply-accumulate
+instructions, when they are available.  The default is
+\&\fB\-mfused\-madd\fR.
+.Sp
+When multiply-accumulate instructions are used, the intermediate
+product is calculated to infinite precision and is not subject to
+the \s-1FCSR\s0 Flush to Zero bit.  This may be undesirable in some
+circumstances.
+.IP "\fB\-nocpp\fR" 4
+.IX Item "-nocpp"
+Tell the \s-1MIPS\s0 assembler to not run its preprocessor over user
+assembler files (with a \fB.s\fR suffix) when assembling them.
+.IP "\fB\-mfix\-sb1\fR" 4
+.IX Item "-mfix-sb1"
+.PD 0
+.IP "\fB\-mno\-fix\-sb1\fR" 4
+.IX Item "-mno-fix-sb1"
+.PD
+Work around certain \s-1SB\-1\s0 \s-1CPU\s0 core errata.
+(This flag currently works around the \s-1SB\-1\s0 revision 2
+``F1'' and ``F2'' floating point errata.)
+.IP "\fB\-mflush\-func=\fR\fIfunc\fR" 4
+.IX Item "-mflush-func=func"
+.PD 0
+.IP "\fB\-mno\-flush\-func\fR" 4
+.IX Item "-mno-flush-func"
+.PD
+Specifies the function to call to flush the I and D caches, or to not
+call any such function.  If called, the function must take the same
+arguments as the common \f(CW\*(C`_flush_func()\*(C'\fR, that is, the address of the
+memory range for which the cache is being flushed, the size of the
+memory range, and the number 3 (to flush both caches).  The default
+depends on the target \s-1GCC\s0 was configured for, but commonly is either
+\&\fB_flush_func\fR or \fB_\|_cpu_flush\fR.
+.IP "\fB\-mbranch\-likely\fR" 4
+.IX Item "-mbranch-likely"
+.PD 0
+.IP "\fB\-mno\-branch\-likely\fR" 4
+.IX Item "-mno-branch-likely"
+.PD
+Enable or disable use of Branch Likely instructions, regardless of the
+default for the selected architecture.  By default, Branch Likely
+instructions may be generated if they are supported by the selected
+architecture.  An exception is for the \s-1MIPS32\s0 and \s-1MIPS64\s0 architectures
+and processors which implement those architectures; for those, Branch
+Likely instructions will not be generated by default because the \s-1MIPS32\s0
+and \s-1MIPS64\s0 architectures specifically deprecate their use.
+.PP
+\fIIntel 386 and \s-1AMD\s0 x86\-64 Options\fR
+.IX Subsection "Intel 386 and AMD x86-64 Options"
+.PP
+These \fB\-m\fR options are defined for the i386 and x86\-64 family of
+computers:
+.IP "\fB\-mtune=\fR\fIcpu-type\fR" 4
+.IX Item "-mtune=cpu-type"
+Tune to \fIcpu-type\fR everything applicable about the generated code, except
+for the \s-1ABI\s0 and the set of available instructions.  The choices for
+\&\fIcpu-type\fR are:
+.RS 4
+.IP "\fIi386\fR" 4
+.IX Item "i386"
+Original Intel's i386 \s-1CPU\s0.
+.IP "\fIi486\fR" 4
+.IX Item "i486"
+Intel's i486 \s-1CPU\s0.  (No scheduling is implemented for this chip.)
+.IP "\fIi586, pentium\fR" 4
+.IX Item "i586, pentium"
+Intel Pentium \s-1CPU\s0 with no \s-1MMX\s0 support.
+.IP "\fIpentium-mmx\fR" 4
+.IX Item "pentium-mmx"
+Intel PentiumMMX \s-1CPU\s0 based on Pentium core with \s-1MMX\s0 instruction set support.
+.IP "\fIi686, pentiumpro\fR" 4
+.IX Item "i686, pentiumpro"
+Intel PentiumPro \s-1CPU\s0.
+.IP "\fIpentium2\fR" 4
+.IX Item "pentium2"
+Intel Pentium2 \s-1CPU\s0 based on PentiumPro core with \s-1MMX\s0 instruction set support.
+.IP "\fIpentium3, pentium3m\fR" 4
+.IX Item "pentium3, pentium3m"
+Intel Pentium3 \s-1CPU\s0 based on PentiumPro core with \s-1MMX\s0 and \s-1SSE\s0 instruction set
+support.
+.IP "\fIpentium-m\fR" 4
+.IX Item "pentium-m"
+Low power version of Intel Pentium3 \s-1CPU\s0 with \s-1MMX\s0, \s-1SSE\s0 and \s-1SSE2\s0 instruction set
+support.  Used by Centrino notebooks.
+.IP "\fIpentium4, pentium4m\fR" 4
+.IX Item "pentium4, pentium4m"
+Intel Pentium4 \s-1CPU\s0 with \s-1MMX\s0, \s-1SSE\s0 and \s-1SSE2\s0 instruction set support.
+.IP "\fIprescott\fR" 4
+.IX Item "prescott"
+Improved version of Intel Pentium4 \s-1CPU\s0 with \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0 and \s-1SSE3\s0 instruction
+set support.
+.IP "\fInocona\fR" 4
+.IX Item "nocona"
+Improved version of Intel Pentium4 \s-1CPU\s0 with 64\-bit extensions, \s-1MMX\s0, \s-1SSE\s0,
+\&\s-1SSE2\s0 and \s-1SSE3\s0 instruction set support.
+.IP "\fIk6\fR" 4
+.IX Item "k6"
+\&\s-1AMD\s0 K6 \s-1CPU\s0 with \s-1MMX\s0 instruction set support.
+.IP "\fIk6\-2, k6\-3\fR" 4
+.IX Item "k6-2, k6-3"
+Improved versions of \s-1AMD\s0 K6 \s-1CPU\s0 with \s-1MMX\s0 and 3dNOW! instruction set support.
+.IP "\fIathlon, athlon-tbird\fR" 4
+.IX Item "athlon, athlon-tbird"
+\&\s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX\s0, 3dNOW!, enhanced 3dNOW! and \s-1SSE\s0 prefetch instructions
+support.
+.IP "\fIathlon\-4, athlon\-xp, athlon-mp\fR" 4
+.IX Item "athlon-4, athlon-xp, athlon-mp"
+Improved \s-1AMD\s0 Athlon \s-1CPU\s0 with \s-1MMX\s0, 3dNOW!, enhanced 3dNOW! and full \s-1SSE\s0
+instruction set support.
+.IP "\fIk8, opteron, athlon64, athlon-fx\fR" 4
+.IX Item "k8, opteron, athlon64, athlon-fx"
+\&\s-1AMD\s0 K8 core based CPUs with x86\-64 instruction set support.  (This supersets
+\&\s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, 3dNOW!, enhanced 3dNOW! and 64\-bit instruction set extensions.)
+.IP "\fIwinchip\-c6\fR" 4
+.IX Item "winchip-c6"
+\&\s-1IDT\s0 Winchip C6 \s-1CPU\s0, dealt in same way as i486 with additional \s-1MMX\s0 instruction
+set support.
+.IP "\fIwinchip2\fR" 4
+.IX Item "winchip2"
+\&\s-1IDT\s0 Winchip2 \s-1CPU\s0, dealt in same way as i486 with additional \s-1MMX\s0 and 3dNOW!
+instruction set support.
+.IP "\fIc3\fR" 4
+.IX Item "c3"
+Via C3 \s-1CPU\s0 with \s-1MMX\s0 and 3dNOW!  instruction set support.  (No scheduling is
+implemented for this chip.)
+.IP "\fIc3\-2\fR" 4
+.IX Item "c3-2"
+Via C3\-2 \s-1CPU\s0 with \s-1MMX\s0 and \s-1SSE\s0 instruction set support.  (No scheduling is
+implemented for this chip.)
+.RE
+.RS 4
+.Sp
+While picking a specific \fIcpu-type\fR will schedule things appropriately
+for that particular chip, the compiler will not generate any code that
+does not run on the i386 without the \fB\-march=\fR\fIcpu-type\fR option
+being used.
+.RE
+.IP "\fB\-march=\fR\fIcpu-type\fR" 4
+.IX Item "-march=cpu-type"
+Generate instructions for the machine type \fIcpu-type\fR.  The choices
+for \fIcpu-type\fR are the same as for \fB\-mtune\fR.  Moreover,
+specifying \fB\-march=\fR\fIcpu-type\fR implies \fB\-mtune=\fR\fIcpu-type\fR.
+.IP "\fB\-mcpu=\fR\fIcpu-type\fR" 4
+.IX Item "-mcpu=cpu-type"
+A deprecated synonym for \fB\-mtune\fR.
+.IP "\fB\-m386\fR" 4
+.IX Item "-m386"
+.PD 0
+.IP "\fB\-m486\fR" 4
+.IX Item "-m486"
+.IP "\fB\-mpentium\fR" 4
+.IX Item "-mpentium"
+.IP "\fB\-mpentiumpro\fR" 4
+.IX Item "-mpentiumpro"
+.PD
+These options are synonyms for \fB\-mtune=i386\fR, \fB\-mtune=i486\fR,
+\&\fB\-mtune=pentium\fR, and \fB\-mtune=pentiumpro\fR respectively.
+These synonyms are deprecated.
+.IP "\fB\-mfpmath=\fR\fIunit\fR" 4
+.IX Item "-mfpmath=unit"
+Generate floating point arithmetics for selected unit \fIunit\fR.  The choices
+for \fIunit\fR are:
+.RS 4
+.IP "\fB387\fR" 4
+.IX Item "387"
+Use the standard 387 floating point coprocessor present majority of chips and
+emulated otherwise.  Code compiled with this option will run almost everywhere.
+The temporary results are computed in 80bit precision instead of precision
+specified by the type resulting in slightly different results compared to most
+of other chips. See \fB\-ffloat\-store\fR for more detailed description.
+.Sp
+This is the default choice for i386 compiler.
+.IP "\fBsse\fR" 4
+.IX Item "sse"
+Use scalar floating point instructions present in the \s-1SSE\s0 instruction set.
+This instruction set is supported by Pentium3 and newer chips, in the \s-1AMD\s0 line
+by Athlon\-4, Athlon-xp and Athlon-mp chips.  The earlier version of \s-1SSE\s0
+instruction set supports only single precision arithmetics, thus the double and
+extended precision arithmetics is still done using 387.  Later version, present
+only in Pentium4 and the future \s-1AMD\s0 x86\-64 chips supports double precision
+arithmetics too.
+.Sp
+For i387 you need to use \fB\-march=\fR\fIcpu-type\fR, \fB\-msse\fR or
+\&\fB\-msse2\fR switches to enable \s-1SSE\s0 extensions and make this option
+effective.  For x86\-64 compiler, these extensions are enabled by default.
+.Sp
+The resulting code should be considerably faster in the majority of cases and avoid
+the numerical instability problems of 387 code, but may break some existing
+code that expects temporaries to be 80bit.
+.Sp
+This is the default choice for the x86\-64 compiler.
+.IP "\fBsse,387\fR" 4
+.IX Item "sse,387"
+Attempt to utilize both instruction sets at once.  This effectively double the
+amount of available registers and on chips with separate execution units for
+387 and \s-1SSE\s0 the execution resources too.  Use this option with care, as it is
+still experimental, because the \s-1GCC\s0 register allocator does not model separate
+functional units well resulting in instable performance.
+.RE
+.RS 4
+.RE
+.IP "\fB\-masm=\fR\fIdialect\fR" 4
+.IX Item "-masm=dialect"
+Output asm instructions using selected \fIdialect\fR. Supported choices are
+\&\fBintel\fR or \fBatt\fR (the default one).
+.IP "\fB\-mieee\-fp\fR" 4
+.IX Item "-mieee-fp"
+.PD 0
+.IP "\fB\-mno\-ieee\-fp\fR" 4
+.IX Item "-mno-ieee-fp"
+.PD
+Control whether or not the compiler uses \s-1IEEE\s0 floating point
+comparisons.  These handle correctly the case where the result of a
+comparison is unordered.
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+Generate output containing library calls for floating point.
+\&\fBWarning:\fR the requisite libraries are not part of \s-1GCC\s0.
+Normally the facilities of the machine's usual C compiler are used, but
+this can't be done directly in cross\-compilation.  You must make your
+own arrangements to provide suitable library functions for
+cross\-compilation.
+.Sp
+On machines where a function returns floating point results in the 80387
+register stack, some floating point opcodes may be emitted even if
+\&\fB\-msoft\-float\fR is used.
+.IP "\fB\-mno\-fp\-ret\-in\-387\fR" 4
+.IX Item "-mno-fp-ret-in-387"
+Do not use the \s-1FPU\s0 registers for return values of functions.
+.Sp
+The usual calling convention has functions return values of types
+\&\f(CW\*(C`float\*(C'\fR and \f(CW\*(C`double\*(C'\fR in an \s-1FPU\s0 register, even if there
+is no \s-1FPU\s0.  The idea is that the operating system should emulate
+an \s-1FPU\s0.
+.Sp
+The option \fB\-mno\-fp\-ret\-in\-387\fR causes such values to be returned
+in ordinary \s-1CPU\s0 registers instead.
+.IP "\fB\-mno\-fancy\-math\-387\fR" 4
+.IX Item "-mno-fancy-math-387"
+Some 387 emulators do not support the \f(CW\*(C`sin\*(C'\fR, \f(CW\*(C`cos\*(C'\fR and
+\&\f(CW\*(C`sqrt\*(C'\fR instructions for the 387.  Specify this option to avoid
+generating those instructions.  This option is the default on FreeBSD,
+OpenBSD and NetBSD.  This option is overridden when \fB\-march\fR
+indicates that the target cpu will always have an \s-1FPU\s0 and so the
+instruction will not need emulation.  As of revision 2.6.1, these
+instructions are not generated unless you also use the
+\&\fB\-funsafe\-math\-optimizations\fR switch.
+.IP "\fB\-malign\-double\fR" 4
+.IX Item "-malign-double"
+.PD 0
+.IP "\fB\-mno\-align\-double\fR" 4
+.IX Item "-mno-align-double"
+.PD
+Control whether \s-1GCC\s0 aligns \f(CW\*(C`double\*(C'\fR, \f(CW\*(C`long double\*(C'\fR, and
+\&\f(CW\*(C`long long\*(C'\fR variables on a two word boundary or a one word
+boundary.  Aligning \f(CW\*(C`double\*(C'\fR variables on a two word boundary will
+produce code that runs somewhat faster on a \fBPentium\fR at the
+expense of more memory.
+.Sp
+\&\fBWarning:\fR if you use the \fB\-malign\-double\fR switch,
+structures containing the above types will be aligned differently than
+the published application binary interface specifications for the 386
+and will not be binary compatible with structures in code compiled
+without that switch.
+.IP "\fB\-m96bit\-long\-double\fR" 4
+.IX Item "-m96bit-long-double"
+.PD 0
+.IP "\fB\-m128bit\-long\-double\fR" 4
+.IX Item "-m128bit-long-double"
+.PD
+These switches control the size of \f(CW\*(C`long double\*(C'\fR type. The i386
+application binary interface specifies the size to be 96 bits,
+so \fB\-m96bit\-long\-double\fR is the default in 32 bit mode.
+.Sp
+Modern architectures (Pentium and newer) would prefer \f(CW\*(C`long double\*(C'\fR
+to be aligned to an 8 or 16 byte boundary.  In arrays or structures
+conforming to the \s-1ABI\s0, this would not be possible.  So specifying a
+\&\fB\-m128bit\-long\-double\fR will align \f(CW\*(C`long double\*(C'\fR
+to a 16 byte boundary by padding the \f(CW\*(C`long double\*(C'\fR with an additional
+32 bit zero.
+.Sp
+In the x86\-64 compiler, \fB\-m128bit\-long\-double\fR is the default choice as
+its \s-1ABI\s0 specifies that \f(CW\*(C`long double\*(C'\fR is to be aligned on 16 byte boundary.
+.Sp
+Notice that neither of these options enable any extra precision over the x87
+standard of 80 bits for a \f(CW\*(C`long double\*(C'\fR.
+.Sp
+\&\fBWarning:\fR if you override the default value for your target \s-1ABI\s0, the
+structures and arrays containing \f(CW\*(C`long double\*(C'\fR variables will change
+their size as well as function calling convention for function taking
+\&\f(CW\*(C`long double\*(C'\fR will be modified.  Hence they will not be binary
+compatible with arrays or structures in code compiled without that switch.
+.IP "\fB\-msvr3\-shlib\fR" 4
+.IX Item "-msvr3-shlib"
+.PD 0
+.IP "\fB\-mno\-svr3\-shlib\fR" 4
+.IX Item "-mno-svr3-shlib"
+.PD
+Control whether \s-1GCC\s0 places uninitialized local variables into the
+\&\f(CW\*(C`bss\*(C'\fR or \f(CW\*(C`data\*(C'\fR segments.  \fB\-msvr3\-shlib\fR places them
+into \f(CW\*(C`bss\*(C'\fR.  These options are meaningful only on System V Release 3.
+.IP "\fB\-mrtd\fR" 4
+.IX Item "-mrtd"
+Use a different function-calling convention, in which functions that
+take a fixed number of arguments return with the \f(CW\*(C`ret\*(C'\fR \fInum\fR
+instruction, which pops their arguments while returning.  This saves one
+instruction in the caller since there is no need to pop the arguments
+there.
+.Sp
+You can specify that an individual function is called with this calling
+sequence with the function attribute \fBstdcall\fR.  You can also
+override the \fB\-mrtd\fR option by using the function attribute
+\&\fBcdecl\fR.  
+.Sp
+\&\fBWarning:\fR this calling convention is incompatible with the one
+normally used on Unix, so you cannot use it if you need to call
+libraries compiled with the Unix compiler.
+.Sp
+Also, you must provide function prototypes for all functions that
+take variable numbers of arguments (including \f(CW\*(C`printf\*(C'\fR);
+otherwise incorrect code will be generated for calls to those
+functions.
+.Sp
+In addition, seriously incorrect code will result if you call a
+function with too many arguments.  (Normally, extra arguments are
+harmlessly ignored.)
+.IP "\fB\-mregparm=\fR\fInum\fR" 4
+.IX Item "-mregparm=num"
+Control how many registers are used to pass integer arguments.  By
+default, no registers are used to pass arguments, and at most 3
+registers can be used.  You can control this behavior for a specific
+function by using the function attribute \fBregparm\fR.
+.Sp
+\&\fBWarning:\fR if you use this switch, and
+\&\fInum\fR is nonzero, then you must build all modules with the same
+value, including any libraries.  This includes the system libraries and
+startup modules.
+.IP "\fB\-mpreferred\-stack\-boundary=\fR\fInum\fR" 4
+.IX Item "-mpreferred-stack-boundary=num"
+Attempt to keep the stack boundary aligned to a 2 raised to \fInum\fR
+byte boundary.  If \fB\-mpreferred\-stack\-boundary\fR is not specified,
+the default is 4 (16 bytes or 128 bits), except when optimizing for code
+size (\fB\-Os\fR), in which case the default is the minimum correct
+alignment (4 bytes for x86, and 8 bytes for x86\-64).
+.Sp
+On Pentium and PentiumPro, \f(CW\*(C`double\*(C'\fR and \f(CW\*(C`long double\*(C'\fR values
+should be aligned to an 8 byte boundary (see \fB\-malign\-double\fR) or
+suffer significant run time performance penalties.  On Pentium \s-1III\s0, the
+Streaming \s-1SIMD\s0 Extension (\s-1SSE\s0) data type \f(CW\*(C`_\|_m128\*(C'\fR suffers similar
+penalties if it is not 16 byte aligned.
+.Sp
+To ensure proper alignment of this values on the stack, the stack boundary
+must be as aligned as that required by any value stored on the stack.
+Further, every function must be generated such that it keeps the stack
+aligned.  Thus calling a function compiled with a higher preferred
+stack boundary from a function compiled with a lower preferred stack
+boundary will most likely misalign the stack.  It is recommended that
+libraries that use callbacks always use the default setting.
+.Sp
+This extra alignment does consume extra stack space, and generally
+increases code size.  Code that is sensitive to stack space usage, such
+as embedded systems and operating system kernels, may want to reduce the
+preferred alignment to \fB\-mpreferred\-stack\-boundary=2\fR.
+.IP "\fB\-mmmx\fR" 4
+.IX Item "-mmmx"
+.PD 0
+.IP "\fB\-mno\-mmx\fR" 4
+.IX Item "-mno-mmx"
+.IP "\fB\-msse\fR" 4
+.IX Item "-msse"
+.IP "\fB\-mno\-sse\fR" 4
+.IX Item "-mno-sse"
+.IP "\fB\-msse2\fR" 4
+.IX Item "-msse2"
+.IP "\fB\-mno\-sse2\fR" 4
+.IX Item "-mno-sse2"
+.IP "\fB\-msse3\fR" 4
+.IX Item "-msse3"
+.IP "\fB\-mno\-sse3\fR" 4
+.IX Item "-mno-sse3"
+.IP "\fB\-m3dnow\fR" 4
+.IX Item "-m3dnow"
+.IP "\fB\-mno\-3dnow\fR" 4
+.IX Item "-mno-3dnow"
+.PD
+These switches enable or disable the use of built-in functions that allow
+direct access to the \s-1MMX\s0, \s-1SSE\s0, \s-1SSE2\s0, \s-1SSE3\s0 and 3Dnow extensions of the
+instruction set.
+.Sp
+To have \s-1SSE/SSE2\s0 instructions generated automatically from floating-point
+code, see \fB\-mfpmath=sse\fR.
+.IP "\fB\-mpush\-args\fR" 4
+.IX Item "-mpush-args"
+.PD 0
+.IP "\fB\-mno\-push\-args\fR" 4
+.IX Item "-mno-push-args"
+.PD
+Use \s-1PUSH\s0 operations to store outgoing parameters.  This method is shorter
+and usually equally fast as method using \s-1SUB/MOV\s0 operations and is enabled
+by default.  In some cases disabling it may improve performance because of
+improved scheduling and reduced dependencies.
+.IP "\fB\-maccumulate\-outgoing\-args\fR" 4
+.IX Item "-maccumulate-outgoing-args"
+If enabled, the maximum amount of space required for outgoing arguments will be
+computed in the function prologue.  This is faster on most modern CPUs
+because of reduced dependencies, improved scheduling and reduced stack usage
+when preferred stack boundary is not equal to 2.  The drawback is a notable
+increase in code size.  This switch implies \fB\-mno\-push\-args\fR.
+.IP "\fB\-mthreads\fR" 4
+.IX Item "-mthreads"
+Support thread-safe exception handling on \fBMingw32\fR.  Code that relies
+on thread-safe exception handling must compile and link all code with the
+\&\fB\-mthreads\fR option.  When compiling, \fB\-mthreads\fR defines
+\&\fB\-D_MT\fR; when linking, it links in a special thread helper library
+\&\fB\-lmingwthrd\fR which cleans up per thread exception handling data.
+.IP "\fB\-mno\-align\-stringops\fR" 4
+.IX Item "-mno-align-stringops"
+Do not align destination of inlined string operations.  This switch reduces
+code size and improves performance in case the destination is already aligned,
+but \s-1GCC\s0 doesn't know about it.
+.IP "\fB\-minline\-all\-stringops\fR" 4
+.IX Item "-minline-all-stringops"
+By default \s-1GCC\s0 inlines string operations only when destination is known to be
+aligned at least to 4 byte boundary.  This enables more inlining, increase code
+size, but may improve performance of code that depends on fast memcpy, strlen
+and memset for short lengths.
+.IP "\fB\-momit\-leaf\-frame\-pointer\fR" 4
+.IX Item "-momit-leaf-frame-pointer"
+Don't keep the frame pointer in a register for leaf functions.  This
+avoids the instructions to save, set up and restore frame pointers and
+makes an extra register available in leaf functions.  The option
+\&\fB\-fomit\-frame\-pointer\fR removes the frame pointer for all functions
+which might make debugging harder.
+.IP "\fB\-mtls\-direct\-seg\-refs\fR" 4
+.IX Item "-mtls-direct-seg-refs"
+.PD 0
+.IP "\fB\-mno\-tls\-direct\-seg\-refs\fR" 4
+.IX Item "-mno-tls-direct-seg-refs"
+.PD
+Controls whether \s-1TLS\s0 variables may be accessed with offsets from the
+\&\s-1TLS\s0 segment register (\f(CW%gs\fR for 32\-bit, \f(CW%fs\fR for 64\-bit),
+or whether the thread base pointer must be added.  Whether or not this
+is legal depends on the operating system, and whether it maps the
+segment to cover the entire \s-1TLS\s0 area.
+.Sp
+For systems that use \s-1GNU\s0 libc, the default is on.
+.PP
+These \fB\-m\fR switches are supported in addition to the above
+on \s-1AMD\s0 x86\-64 processors in 64\-bit environments.
+.IP "\fB\-m32\fR" 4
+.IX Item "-m32"
+.PD 0
+.IP "\fB\-m64\fR" 4
+.IX Item "-m64"
+.PD
+Generate code for a 32\-bit or 64\-bit environment.
+The 32\-bit environment sets int, long and pointer to 32 bits and
+generates code that runs on any i386 system.
+The 64\-bit environment sets int to 32 bits and long and pointer
+to 64 bits and generates code for \s-1AMD\s0's x86\-64 architecture.
+.IP "\fB\-mno\-red\-zone\fR" 4
+.IX Item "-mno-red-zone"
+Do not use a so called red zone for x86\-64 code.  The red zone is mandated
+by the x86\-64 \s-1ABI\s0, it is a 128\-byte area beyond the location of the
+stack pointer that will not be modified by signal or interrupt handlers
+and therefore can be used for temporary data without adjusting the stack
+pointer.  The flag \fB\-mno\-red\-zone\fR disables this red zone.
+.IP "\fB\-mcmodel=small\fR" 4
+.IX Item "-mcmodel=small"
+Generate code for the small code model: the program and its symbols must
+be linked in the lower 2 \s-1GB\s0 of the address space.  Pointers are 64 bits.
+Programs can be statically or dynamically linked.  This is the default
+code model.
+.IP "\fB\-mcmodel=kernel\fR" 4
+.IX Item "-mcmodel=kernel"
+Generate code for the kernel code model.  The kernel runs in the
+negative 2 \s-1GB\s0 of the address space.
+This model has to be used for Linux kernel code.
+.IP "\fB\-mcmodel=medium\fR" 4
+.IX Item "-mcmodel=medium"
+Generate code for the medium model: The program is linked in the lower 2
+\&\s-1GB\s0 of the address space but symbols can be located anywhere in the
+address space.  Programs can be statically or dynamically linked, but
+building of shared libraries are not supported with the medium model.
+.IP "\fB\-mcmodel=large\fR" 4
+.IX Item "-mcmodel=large"
+Generate code for the large model: This model makes no assumptions
+about addresses and sizes of sections.  Currently \s-1GCC\s0 does not implement
+this model.
+.PP
+\fI\s-1HPPA\s0 Options\fR
+.IX Subsection "HPPA Options"
+.PP
+These \fB\-m\fR options are defined for the \s-1HPPA\s0 family of computers:
+.IP "\fB\-march=\fR\fIarchitecture-type\fR" 4
+.IX Item "-march=architecture-type"
+Generate code for the specified architecture.  The choices for
+\&\fIarchitecture-type\fR are \fB1.0\fR for \s-1PA\s0 1.0, \fB1.1\fR for \s-1PA\s0
+1.1, and \fB2.0\fR for \s-1PA\s0 2.0 processors.  Refer to
+\&\fI/usr/lib/sched.models\fR on an HP-UX system to determine the proper
+architecture option for your machine.  Code compiled for lower numbered
+architectures will run on higher numbered architectures, but not the
+other way around.
+.Sp
+\&\s-1PA\s0 2.0 support currently requires gas snapshot 19990413 or later.  The
+next release of binutils (current is 2.9.1) will probably contain \s-1PA\s0 2.0
+support.
+.IP "\fB\-mpa\-risc\-1\-0\fR" 4
+.IX Item "-mpa-risc-1-0"
+.PD 0
+.IP "\fB\-mpa\-risc\-1\-1\fR" 4
+.IX Item "-mpa-risc-1-1"
+.IP "\fB\-mpa\-risc\-2\-0\fR" 4
+.IX Item "-mpa-risc-2-0"
+.PD
+Synonyms for \fB\-march=1.0\fR, \fB\-march=1.1\fR, and \fB\-march=2.0\fR respectively.
+.IP "\fB\-mbig\-switch\fR" 4
+.IX Item "-mbig-switch"
+Generate code suitable for big switch tables.  Use this option only if
+the assembler/linker complain about out of range branches within a switch
+table.
+.IP "\fB\-mjump\-in\-delay\fR" 4
+.IX Item "-mjump-in-delay"
+Fill delay slots of function calls with unconditional jump instructions
+by modifying the return pointer for the function call to be the target
+of the conditional jump.
+.IP "\fB\-mdisable\-fpregs\fR" 4
+.IX Item "-mdisable-fpregs"
+Prevent floating point registers from being used in any manner.  This is
+necessary for compiling kernels which perform lazy context switching of
+floating point registers.  If you use this option and attempt to perform
+floating point operations, the compiler will abort.
+.IP "\fB\-mdisable\-indexing\fR" 4
+.IX Item "-mdisable-indexing"
+Prevent the compiler from using indexing address modes.  This avoids some
+rather obscure problems when compiling \s-1MIG\s0 generated code under \s-1MACH\s0.
+.IP "\fB\-mno\-space\-regs\fR" 4
+.IX Item "-mno-space-regs"
+Generate code that assumes the target has no space registers.  This allows
+\&\s-1GCC\s0 to generate faster indirect calls and use unscaled index address modes.
+.Sp
+Such code is suitable for level 0 \s-1PA\s0 systems and kernels.
+.IP "\fB\-mfast\-indirect\-calls\fR" 4
+.IX Item "-mfast-indirect-calls"
+Generate code that assumes calls never cross space boundaries.  This
+allows \s-1GCC\s0 to emit code which performs faster indirect calls.
+.Sp
+This option will not work in the presence of shared libraries or nested
+functions.
+.IP "\fB\-mlong\-load\-store\fR" 4
+.IX Item "-mlong-load-store"
+Generate 3\-instruction load and store sequences as sometimes required by
+the HP-UX 10 linker.  This is equivalent to the \fB+k\fR option to
+the \s-1HP\s0 compilers.
+.IP "\fB\-mportable\-runtime\fR" 4
+.IX Item "-mportable-runtime"
+Use the portable calling conventions proposed by \s-1HP\s0 for \s-1ELF\s0 systems.
+.IP "\fB\-mgas\fR" 4
+.IX Item "-mgas"
+Enable the use of assembler directives only \s-1GAS\s0 understands.
+.IP "\fB\-mschedule=\fR\fIcpu-type\fR" 4
+.IX Item "-mschedule=cpu-type"
+Schedule code according to the constraints for the machine type
+\&\fIcpu-type\fR.  The choices for \fIcpu-type\fR are \fB700\fR
+\&\fB7100\fR, \fB7100LC\fR, \fB7200\fR, \fB7300\fR and \fB8000\fR.  Refer
+to \fI/usr/lib/sched.models\fR on an HP-UX system to determine the
+proper scheduling option for your machine.  The default scheduling is
+\&\fB8000\fR.
+.IP "\fB\-mlinker\-opt\fR" 4
+.IX Item "-mlinker-opt"
+Enable the optimization pass in the HP-UX linker.  Note this makes symbolic
+debugging impossible.  It also triggers a bug in the HP-UX 8 and HP-UX 9
+linkers in which they give bogus error messages when linking some programs.
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+Generate output containing library calls for floating point.
+\&\fBWarning:\fR the requisite libraries are not available for all \s-1HPPA\s0
+targets.  Normally the facilities of the machine's usual C compiler are
+used, but this cannot be done directly in cross\-compilation.  You must make
+your own arrangements to provide suitable library functions for
+cross\-compilation.  The embedded target \fBhppa1.1\-*\-pro\fR
+does provide software floating point support.
+.Sp
+\&\fB\-msoft\-float\fR changes the calling convention in the output file;
+therefore, it is only useful if you compile \fIall\fR of a program with
+this option.  In particular, you need to compile \fIlibgcc.a\fR, the
+library that comes with \s-1GCC\s0, with \fB\-msoft\-float\fR in order for
+this to work.
+.IP "\fB\-msio\fR" 4
+.IX Item "-msio"
+Generate the predefine, \f(CW\*(C`_SIO\*(C'\fR, for server \s-1IO\s0.  The default is
+\&\fB\-mwsio\fR.  This generates the predefines, \f(CW\*(C`_\|_hp9000s700\*(C'\fR,
+\&\f(CW\*(C`_\|_hp9000s700_\|_\*(C'\fR and \f(CW\*(C`_WSIO\*(C'\fR, for workstation \s-1IO\s0.  These
+options are available under HP-UX and \s-1HI\-UX\s0.
+.IP "\fB\-mgnu\-ld\fR" 4
+.IX Item "-mgnu-ld"
+Use \s-1GNU\s0 ld specific options.  This passes \fB\-shared\fR to ld when
+building a shared library.  It is the default when \s-1GCC\s0 is configured,
+explicitly or implicitly, with the \s-1GNU\s0 linker.  This option does not
+have any affect on which ld is called, it only changes what parameters
+are passed to that ld.  The ld that is called is determined by the
+\&\fB\-\-with\-ld\fR configure option, \s-1GCC\s0's program search path, and
+finally by the user's \fB\s-1PATH\s0\fR.  The linker used by \s-1GCC\s0 can be printed
+using \fBwhich `gcc \-print\-prog\-name=ld`\fR.
+.IP "\fB\-mhp\-ld\fR" 4
+.IX Item "-mhp-ld"
+Use \s-1HP\s0 ld specific options.  This passes \fB\-b\fR to ld when building
+a shared library and passes \fB+Accept TypeMismatch\fR to ld on all
+links.  It is the default when \s-1GCC\s0 is configured, explicitly or
+implicitly, with the \s-1HP\s0 linker.  This option does not have any affect on
+which ld is called, it only changes what parameters are passed to that
+ld.  The ld that is called is determined by the \fB\-\-with\-ld\fR
+configure option, \s-1GCC\s0's program search path, and finally by the user's
+\&\fB\s-1PATH\s0\fR.  The linker used by \s-1GCC\s0 can be printed using \fBwhich
+`gcc \-print\-prog\-name=ld`\fR.
+.IP "\fB\-mlong\-calls\fR" 4
+.IX Item "-mlong-calls"
+Generate code that uses long call sequences.  This ensures that a call
+is always able to reach linker generated stubs.  The default is to generate
+long calls only when the distance from the call site to the beginning
+of the function or translation unit, as the case may be, exceeds a
+predefined limit set by the branch type being used.  The limits for
+normal calls are 7,600,000 and 240,000 bytes, respectively for the
+\&\s-1PA\s0 2.0 and \s-1PA\s0 1.X architectures.  Sibcalls are always limited at
+240,000 bytes.
+.Sp
+Distances are measured from the beginning of functions when using the
+\&\fB\-ffunction\-sections\fR option, or when using the \fB\-mgas\fR
+and \fB\-mno\-portable\-runtime\fR options together under HP-UX with
+the \s-1SOM\s0 linker.
+.Sp
+It is normally not desirable to use this option as it will degrade
+performance.  However, it may be useful in large applications,
+particularly when partial linking is used to build the application.
+.Sp
+The types of long calls used depends on the capabilities of the
+assembler and linker, and the type of code being generated.  The
+impact on systems that support long absolute calls, and long pic
+symbol-difference or pc-relative calls should be relatively small.
+However, an indirect call is used on 32\-bit \s-1ELF\s0 systems in pic code
+and it is quite long.
+.IP "\fB\-nolibdld\fR" 4
+.IX Item "-nolibdld"
+Suppress the generation of link options to search libdld.sl when the
+\&\fB\-static\fR option is specified on HP-UX 10 and later.
+.IP "\fB\-static\fR" 4
+.IX Item "-static"
+The HP-UX implementation of setlocale in libc has a dependency on
+libdld.sl.  There isn't an archive version of libdld.sl.  Thus,
+when the \fB\-static\fR option is specified, special link options
+are needed to resolve this dependency.
+.Sp
+On HP-UX 10 and later, the \s-1GCC\s0 driver adds the necessary options to
+link with libdld.sl when the \fB\-static\fR option is specified.
+This causes the resulting binary to be dynamic.  On the 64\-bit port,
+the linkers generate dynamic binaries by default in any case.  The
+\&\fB\-nolibdld\fR option can be used to prevent the \s-1GCC\s0 driver from
+adding these link options.
+.IP "\fB\-threads\fR" 4
+.IX Item "-threads"
+Add support for multithreading with the \fIdce thread\fR library
+under \s-1HP\-UX\s0.  This option sets flags for both the preprocessor and
+linker.
+.PP
+\fIIntel 960 Options\fR
+.IX Subsection "Intel 960 Options"
+.PP
+These \fB\-m\fR options are defined for the Intel 960 implementations:
+.IP "\fB\-m\fR\fIcpu-type\fR" 4
+.IX Item "-mcpu-type"
+Assume the defaults for the machine type \fIcpu-type\fR for some of
+the other options, including instruction scheduling, floating point
+support, and addressing modes.  The choices for \fIcpu-type\fR are
+\&\fBka\fR, \fBkb\fR, \fBmc\fR, \fBca\fR, \fBcf\fR,
+\&\fBsa\fR, and \fBsb\fR.
+The default is
+\&\fBkb\fR.
+.IP "\fB\-mnumerics\fR" 4
+.IX Item "-mnumerics"
+.PD 0
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+.PD
+The \fB\-mnumerics\fR option indicates that the processor does support
+floating-point instructions.  The \fB\-msoft\-float\fR option indicates
+that floating-point support should not be assumed.
+.IP "\fB\-mleaf\-procedures\fR" 4
+.IX Item "-mleaf-procedures"
+.PD 0
+.IP "\fB\-mno\-leaf\-procedures\fR" 4
+.IX Item "-mno-leaf-procedures"
+.PD
+Do (or do not) attempt to alter leaf procedures to be callable with the
+\&\f(CW\*(C`bal\*(C'\fR instruction as well as \f(CW\*(C`call\*(C'\fR.  This will result in more
+efficient code for explicit calls when the \f(CW\*(C`bal\*(C'\fR instruction can be
+substituted by the assembler or linker, but less efficient code in other
+cases, such as calls via function pointers, or using a linker that doesn't
+support this optimization.
+.IP "\fB\-mtail\-call\fR" 4
+.IX Item "-mtail-call"
+.PD 0
+.IP "\fB\-mno\-tail\-call\fR" 4
+.IX Item "-mno-tail-call"
+.PD
+Do (or do not) make additional attempts (beyond those of the
+machine-independent portions of the compiler) to optimize tail-recursive
+calls into branches.  You may not want to do this because the detection of
+cases where this is not valid is not totally complete.  The default is
+\&\fB\-mno\-tail\-call\fR.
+.IP "\fB\-mcomplex\-addr\fR" 4
+.IX Item "-mcomplex-addr"
+.PD 0
+.IP "\fB\-mno\-complex\-addr\fR" 4
+.IX Item "-mno-complex-addr"
+.PD
+Assume (or do not assume) that the use of a complex addressing mode is a
+win on this implementation of the i960.  Complex addressing modes may not
+be worthwhile on the K\-series, but they definitely are on the C\-series.
+The default is currently \fB\-mcomplex\-addr\fR for all processors except
+the \s-1CB\s0 and \s-1CC\s0.
+.IP "\fB\-mcode\-align\fR" 4
+.IX Item "-mcode-align"
+.PD 0
+.IP "\fB\-mno\-code\-align\fR" 4
+.IX Item "-mno-code-align"
+.PD
+Align code to 8\-byte boundaries for faster fetching (or don't bother).
+Currently turned on by default for C\-series implementations only.
+.IP "\fB\-mic\-compat\fR" 4
+.IX Item "-mic-compat"
+.PD 0
+.IP "\fB\-mic2.0\-compat\fR" 4
+.IX Item "-mic2.0-compat"
+.IP "\fB\-mic3.0\-compat\fR" 4
+.IX Item "-mic3.0-compat"
+.PD
+Enable compatibility with iC960 v2.0 or v3.0.
+.IP "\fB\-masm\-compat\fR" 4
+.IX Item "-masm-compat"
+.PD 0
+.IP "\fB\-mintel\-asm\fR" 4
+.IX Item "-mintel-asm"
+.PD
+Enable compatibility with the iC960 assembler.
+.IP "\fB\-mstrict\-align\fR" 4
+.IX Item "-mstrict-align"
+.PD 0
+.IP "\fB\-mno\-strict\-align\fR" 4
+.IX Item "-mno-strict-align"
+.PD
+Do not permit (do permit) unaligned accesses.
+.IP "\fB\-mold\-align\fR" 4
+.IX Item "-mold-align"
+Enable structure-alignment compatibility with Intel's gcc release version
+1.3 (based on gcc 1.37).  This option implies \fB\-mstrict\-align\fR.
+.IP "\fB\-mlong\-double\-64\fR" 4
+.IX Item "-mlong-double-64"
+Implement type \fBlong double\fR as 64\-bit floating point numbers.
+Without the option \fBlong double\fR is implemented by 80\-bit
+floating point numbers.  The only reason we have it because there is
+no 128\-bit \fBlong double\fR support in \fBfp\-bit.c\fR yet.  So it
+is only useful for people using soft-float targets.  Otherwise, we
+should recommend against use of it.
+.PP
+\fI\s-1DEC\s0 Alpha Options\fR
+.IX Subsection "DEC Alpha Options"
+.PP
+These \fB\-m\fR options are defined for the \s-1DEC\s0 Alpha implementations:
+.IP "\fB\-mno\-soft\-float\fR" 4
+.IX Item "-mno-soft-float"
+.PD 0
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+.PD
+Use (do not use) the hardware floating-point instructions for
+floating-point operations.  When \fB\-msoft\-float\fR is specified,
+functions in \fIlibgcc.a\fR will be used to perform floating-point
+operations.  Unless they are replaced by routines that emulate the
+floating-point operations, or compiled in such a way as to call such
+emulations routines, these routines will issue floating-point
+operations.   If you are compiling for an Alpha without floating-point
+operations, you must ensure that the library is built so as not to call
+them.
+.Sp
+Note that Alpha implementations without floating-point operations are
+required to have floating-point registers.
+.IP "\fB\-mfp\-reg\fR" 4
+.IX Item "-mfp-reg"
+.PD 0
+.IP "\fB\-mno\-fp\-regs\fR" 4
+.IX Item "-mno-fp-regs"
+.PD
+Generate code that uses (does not use) the floating-point register set.
+\&\fB\-mno\-fp\-regs\fR implies \fB\-msoft\-float\fR.  If the floating-point
+register set is not used, floating point operands are passed in integer
+registers as if they were integers and floating-point results are passed
+in \f(CW$0\fR instead of \f(CW$f0\fR.  This is a non-standard calling sequence,
+so any function with a floating-point argument or return value called by code
+compiled with \fB\-mno\-fp\-regs\fR must also be compiled with that
+option.
+.Sp
+A typical use of this option is building a kernel that does not use,
+and hence need not save and restore, any floating-point registers.
+.IP "\fB\-mieee\fR" 4
+.IX Item "-mieee"
+The Alpha architecture implements floating-point hardware optimized for
+maximum performance.  It is mostly compliant with the \s-1IEEE\s0 floating
+point standard.  However, for full compliance, software assistance is
+required.  This option generates code fully \s-1IEEE\s0 compliant code
+\&\fIexcept\fR that the \fIinexact-flag\fR is not maintained (see below).
+If this option is turned on, the preprocessor macro \f(CW\*(C`_IEEE_FP\*(C'\fR is
+defined during compilation.  The resulting code is less efficient but is
+able to correctly support denormalized numbers and exceptional \s-1IEEE\s0
+values such as not-a-number and plus/minus infinity.  Other Alpha
+compilers call this option \fB\-ieee_with_no_inexact\fR.
+.IP "\fB\-mieee\-with\-inexact\fR" 4
+.IX Item "-mieee-with-inexact"
+This is like \fB\-mieee\fR except the generated code also maintains
+the \s-1IEEE\s0 \fIinexact-flag\fR.  Turning on this option causes the
+generated code to implement fully-compliant \s-1IEEE\s0 math.  In addition to
+\&\f(CW\*(C`_IEEE_FP\*(C'\fR, \f(CW\*(C`_IEEE_FP_EXACT\*(C'\fR is defined as a preprocessor
+macro.  On some Alpha implementations the resulting code may execute
+significantly slower than the code generated by default.  Since there is
+very little code that depends on the \fIinexact-flag\fR, you should
+normally not specify this option.  Other Alpha compilers call this
+option \fB\-ieee_with_inexact\fR.
+.IP "\fB\-mfp\-trap\-mode=\fR\fItrap-mode\fR" 4
+.IX Item "-mfp-trap-mode=trap-mode"
+This option controls what floating-point related traps are enabled.
+Other Alpha compilers call this option \fB\-fptm\fR \fItrap-mode\fR.
+The trap mode can be set to one of four values:
+.RS 4
+.IP "\fBn\fR" 4
+.IX Item "n"
+This is the default (normal) setting.  The only traps that are enabled
+are the ones that cannot be disabled in software (e.g., division by zero
+trap).
+.IP "\fBu\fR" 4
+.IX Item "u"
+In addition to the traps enabled by \fBn\fR, underflow traps are enabled
+as well.
+.IP "\fBsu\fR" 4
+.IX Item "su"
+Like \fBsu\fR, but the instructions are marked to be safe for software
+completion (see Alpha architecture manual for details).
+.IP "\fBsui\fR" 4
+.IX Item "sui"
+Like \fBsu\fR, but inexact traps are enabled as well.
+.RE
+.RS 4
+.RE
+.IP "\fB\-mfp\-rounding\-mode=\fR\fIrounding-mode\fR" 4
+.IX Item "-mfp-rounding-mode=rounding-mode"
+Selects the \s-1IEEE\s0 rounding mode.  Other Alpha compilers call this option
+\&\fB\-fprm\fR \fIrounding-mode\fR.  The \fIrounding-mode\fR can be one
+of:
+.RS 4
+.IP "\fBn\fR" 4
+.IX Item "n"
+Normal \s-1IEEE\s0 rounding mode.  Floating point numbers are rounded towards
+the nearest machine number or towards the even machine number in case
+of a tie.
+.IP "\fBm\fR" 4
+.IX Item "m"
+Round towards minus infinity.
+.IP "\fBc\fR" 4
+.IX Item "c"
+Chopped rounding mode.  Floating point numbers are rounded towards zero.
+.IP "\fBd\fR" 4
+.IX Item "d"
+Dynamic rounding mode.  A field in the floating point control register
+(\fIfpcr\fR, see Alpha architecture reference manual) controls the
+rounding mode in effect.  The C library initializes this register for
+rounding towards plus infinity.  Thus, unless your program modifies the
+\&\fIfpcr\fR, \fBd\fR corresponds to round towards plus infinity.
+.RE
+.RS 4
+.RE
+.IP "\fB\-mtrap\-precision=\fR\fItrap-precision\fR" 4
+.IX Item "-mtrap-precision=trap-precision"
+In the Alpha architecture, floating point traps are imprecise.  This
+means without software assistance it is impossible to recover from a
+floating trap and program execution normally needs to be terminated.
+\&\s-1GCC\s0 can generate code that can assist operating system trap handlers
+in determining the exact location that caused a floating point trap.
+Depending on the requirements of an application, different levels of
+precisions can be selected:
+.RS 4
+.IP "\fBp\fR" 4
+.IX Item "p"
+Program precision.  This option is the default and means a trap handler
+can only identify which program caused a floating point exception.
+.IP "\fBf\fR" 4
+.IX Item "f"
+Function precision.  The trap handler can determine the function that
+caused a floating point exception.
+.IP "\fBi\fR" 4
+.IX Item "i"
+Instruction precision.  The trap handler can determine the exact
+instruction that caused a floating point exception.
+.RE
+.RS 4
+.Sp
+Other Alpha compilers provide the equivalent options called
+\&\fB\-scope_safe\fR and \fB\-resumption_safe\fR.
+.RE
+.IP "\fB\-mieee\-conformant\fR" 4
+.IX Item "-mieee-conformant"
+This option marks the generated code as \s-1IEEE\s0 conformant.  You must not
+use this option unless you also specify \fB\-mtrap\-precision=i\fR and either
+\&\fB\-mfp\-trap\-mode=su\fR or \fB\-mfp\-trap\-mode=sui\fR.  Its only effect
+is to emit the line \fB.eflag 48\fR in the function prologue of the
+generated assembly file.  Under \s-1DEC\s0 Unix, this has the effect that
+IEEE-conformant math library routines will be linked in.
+.IP "\fB\-mbuild\-constants\fR" 4
+.IX Item "-mbuild-constants"
+Normally \s-1GCC\s0 examines a 32\- or 64\-bit integer constant to
+see if it can construct it from smaller constants in two or three
+instructions.  If it cannot, it will output the constant as a literal and
+generate code to load it from the data segment at runtime.
+.Sp
+Use this option to require \s-1GCC\s0 to construct \fIall\fR integer constants
+using code, even if it takes more instructions (the maximum is six).
+.Sp
+You would typically use this option to build a shared library dynamic
+loader.  Itself a shared library, it must relocate itself in memory
+before it can find the variables and constants in its own data segment.
+.IP "\fB\-malpha\-as\fR" 4
+.IX Item "-malpha-as"
+.PD 0
+.IP "\fB\-mgas\fR" 4
+.IX Item "-mgas"
+.PD
+Select whether to generate code to be assembled by the vendor-supplied
+assembler (\fB\-malpha\-as\fR) or by the \s-1GNU\s0 assembler \fB\-mgas\fR.
+.IP "\fB\-mbwx\fR" 4
+.IX Item "-mbwx"
+.PD 0
+.IP "\fB\-mno\-bwx\fR" 4
+.IX Item "-mno-bwx"
+.IP "\fB\-mcix\fR" 4
+.IX Item "-mcix"
+.IP "\fB\-mno\-cix\fR" 4
+.IX Item "-mno-cix"
+.IP "\fB\-mfix\fR" 4
+.IX Item "-mfix"
+.IP "\fB\-mno\-fix\fR" 4
+.IX Item "-mno-fix"
+.IP "\fB\-mmax\fR" 4
+.IX Item "-mmax"
+.IP "\fB\-mno\-max\fR" 4
+.IX Item "-mno-max"
+.PD
+Indicate whether \s-1GCC\s0 should generate code to use the optional \s-1BWX\s0,
+\&\s-1CIX\s0, \s-1FIX\s0 and \s-1MAX\s0 instruction sets.  The default is to use the instruction
+sets supported by the \s-1CPU\s0 type specified via \fB\-mcpu=\fR option or that
+of the \s-1CPU\s0 on which \s-1GCC\s0 was built if none was specified.
+.IP "\fB\-mfloat\-vax\fR" 4
+.IX Item "-mfloat-vax"
+.PD 0
+.IP "\fB\-mfloat\-ieee\fR" 4
+.IX Item "-mfloat-ieee"
+.PD
+Generate code that uses (does not use) \s-1VAX\s0 F and G floating point
+arithmetic instead of \s-1IEEE\s0 single and double precision.
+.IP "\fB\-mexplicit\-relocs\fR" 4
+.IX Item "-mexplicit-relocs"
+.PD 0
+.IP "\fB\-mno\-explicit\-relocs\fR" 4
+.IX Item "-mno-explicit-relocs"
+.PD
+Older Alpha assemblers provided no way to generate symbol relocations
+except via assembler macros.  Use of these macros does not allow
+optimal instruction scheduling.  \s-1GNU\s0 binutils as of version 2.12
+supports a new syntax that allows the compiler to explicitly mark
+which relocations should apply to which instructions.  This option
+is mostly useful for debugging, as \s-1GCC\s0 detects the capabilities of
+the assembler when it is built and sets the default accordingly.
+.IP "\fB\-msmall\-data\fR" 4
+.IX Item "-msmall-data"
+.PD 0
+.IP "\fB\-mlarge\-data\fR" 4
+.IX Item "-mlarge-data"
+.PD
+When \fB\-mexplicit\-relocs\fR is in effect, static data is
+accessed via \fIgp-relative\fR relocations.  When \fB\-msmall\-data\fR
+is used, objects 8 bytes long or smaller are placed in a \fIsmall data area\fR
+(the \f(CW\*(C`.sdata\*(C'\fR and \f(CW\*(C`.sbss\*(C'\fR sections) and are accessed via
+16\-bit relocations off of the \f(CW$gp\fR register.  This limits the
+size of the small data area to 64KB, but allows the variables to be
+directly accessed via a single instruction.
+.Sp
+The default is \fB\-mlarge\-data\fR.  With this option the data area
+is limited to just below 2GB.  Programs that require more than 2GB of
+data must use \f(CW\*(C`malloc\*(C'\fR or \f(CW\*(C`mmap\*(C'\fR to allocate the data in the
+heap instead of in the program's data segment.
+.Sp
+When generating code for shared libraries, \fB\-fpic\fR implies
+\&\fB\-msmall\-data\fR and \fB\-fPIC\fR implies \fB\-mlarge\-data\fR.
+.IP "\fB\-msmall\-text\fR" 4
+.IX Item "-msmall-text"
+.PD 0
+.IP "\fB\-mlarge\-text\fR" 4
+.IX Item "-mlarge-text"
+.PD
+When \fB\-msmall\-text\fR is used, the compiler assumes that the
+code of the entire program (or shared library) fits in 4MB, and is
+thus reachable with a branch instruction.  When \fB\-msmall\-data\fR
+is used, the compiler can assume that all local symbols share the
+same \f(CW$gp\fR value, and thus reduce the number of instructions
+required for a function call from 4 to 1.
+.Sp
+The default is \fB\-mlarge\-text\fR.
+.IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4
+.IX Item "-mcpu=cpu_type"
+Set the instruction set and instruction scheduling parameters for
+machine type \fIcpu_type\fR.  You can specify either the \fB\s-1EV\s0\fR
+style name or the corresponding chip number.  \s-1GCC\s0 supports scheduling
+parameters for the \s-1EV4\s0, \s-1EV5\s0 and \s-1EV6\s0 family of processors and will
+choose the default values for the instruction set from the processor
+you specify.  If you do not specify a processor type, \s-1GCC\s0 will default
+to the processor on which the compiler was built.
+.Sp
+Supported values for \fIcpu_type\fR are
+.RS 4
+.IP "\fBev4\fR" 4
+.IX Item "ev4"
+.PD 0
+.IP "\fBev45\fR" 4
+.IX Item "ev45"
+.IP "\fB21064\fR" 4
+.IX Item "21064"
+.PD
+Schedules as an \s-1EV4\s0 and has no instruction set extensions.
+.IP "\fBev5\fR" 4
+.IX Item "ev5"
+.PD 0
+.IP "\fB21164\fR" 4
+.IX Item "21164"
+.PD
+Schedules as an \s-1EV5\s0 and has no instruction set extensions.
+.IP "\fBev56\fR" 4
+.IX Item "ev56"
+.PD 0
+.IP "\fB21164a\fR" 4
+.IX Item "21164a"
+.PD
+Schedules as an \s-1EV5\s0 and supports the \s-1BWX\s0 extension.
+.IP "\fBpca56\fR" 4
+.IX Item "pca56"
+.PD 0
+.IP "\fB21164pc\fR" 4
+.IX Item "21164pc"
+.IP "\fB21164PC\fR" 4
+.IX Item "21164PC"
+.PD
+Schedules as an \s-1EV5\s0 and supports the \s-1BWX\s0 and \s-1MAX\s0 extensions.
+.IP "\fBev6\fR" 4
+.IX Item "ev6"
+.PD 0
+.IP "\fB21264\fR" 4
+.IX Item "21264"
+.PD
+Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions.
+.IP "\fBev67\fR" 4
+.IX Item "ev67"
+.PD 0
+.IP "\fB21264a\fR" 4
+.IX Item "21264a"
+.PD
+Schedules as an \s-1EV6\s0 and supports the \s-1BWX\s0, \s-1CIX\s0, \s-1FIX\s0, and \s-1MAX\s0 extensions.
+.RE
+.RS 4
+.RE
+.IP "\fB\-mtune=\fR\fIcpu_type\fR" 4
+.IX Item "-mtune=cpu_type"
+Set only the instruction scheduling parameters for machine type
+\&\fIcpu_type\fR.  The instruction set is not changed.
+.IP "\fB\-mmemory\-latency=\fR\fItime\fR" 4
+.IX Item "-mmemory-latency=time"
+Sets the latency the scheduler should assume for typical memory
+references as seen by the application.  This number is highly
+dependent on the memory access patterns used by the application
+and the size of the external cache on the machine.
+.Sp
+Valid options for \fItime\fR are
+.RS 4
+.IP "\fInumber\fR" 4
+.IX Item "number"
+A decimal number representing clock cycles.
+.IP "\fBL1\fR" 4
+.IX Item "L1"
+.PD 0
+.IP "\fBL2\fR" 4
+.IX Item "L2"
+.IP "\fBL3\fR" 4
+.IX Item "L3"
+.IP "\fBmain\fR" 4
+.IX Item "main"
+.PD
+The compiler contains estimates of the number of clock cycles for
+``typical'' \s-1EV4\s0 & \s-1EV5\s0 hardware for the Level 1, 2 & 3 caches
+(also called Dcache, Scache, and Bcache), as well as to main memory.
+Note that L3 is only valid for \s-1EV5\s0.
+.RE
+.RS 4
+.RE
+.PP
+\fI\s-1DEC\s0 Alpha/VMS Options\fR
+.IX Subsection "DEC Alpha/VMS Options"
+.PP
+These \fB\-m\fR options are defined for the \s-1DEC\s0 Alpha/VMS implementations:
+.IP "\fB\-mvms\-return\-codes\fR" 4
+.IX Item "-mvms-return-codes"
+Return \s-1VMS\s0 condition codes from main.  The default is to return \s-1POSIX\s0
+style condition (e.g. error) codes.
+.PP
+\fIH8/300 Options\fR
+.IX Subsection "H8/300 Options"
+.PP
+These \fB\-m\fR options are defined for the H8/300 implementations:
+.IP "\fB\-mrelax\fR" 4
+.IX Item "-mrelax"
+Shorten some address references at link time, when possible; uses the
+linker option \fB\-relax\fR.  
+.IP "\fB\-mh\fR" 4
+.IX Item "-mh"
+Generate code for the H8/300H.
+.IP "\fB\-ms\fR" 4
+.IX Item "-ms"
+Generate code for the H8S.
+.IP "\fB\-mn\fR" 4
+.IX Item "-mn"
+Generate code for the H8S and H8/300H in the normal mode.  This switch
+must be used either with \-mh or \-ms.
+.IP "\fB\-ms2600\fR" 4
+.IX Item "-ms2600"
+Generate code for the H8S/2600.  This switch must be used with \fB\-ms\fR.
+.IP "\fB\-mint32\fR" 4
+.IX Item "-mint32"
+Make \f(CW\*(C`int\*(C'\fR data 32 bits by default.
+.IP "\fB\-malign\-300\fR" 4
+.IX Item "-malign-300"
+On the H8/300H and H8S, use the same alignment rules as for the H8/300.
+The default for the H8/300H and H8S is to align longs and floats on 4
+byte boundaries.
+\&\fB\-malign\-300\fR causes them to be aligned on 2 byte boundaries.
+This option has no effect on the H8/300.
+.PP
+\fI\s-1SH\s0 Options\fR
+.IX Subsection "SH Options"
+.PP
+These \fB\-m\fR options are defined for the \s-1SH\s0 implementations:
+.IP "\fB\-m1\fR" 4
+.IX Item "-m1"
+Generate code for the \s-1SH1\s0.
+.IP "\fB\-m2\fR" 4
+.IX Item "-m2"
+Generate code for the \s-1SH2\s0.
+.IP "\fB\-m2e\fR" 4
+.IX Item "-m2e"
+Generate code for the SH2e.
+.IP "\fB\-m3\fR" 4
+.IX Item "-m3"
+Generate code for the \s-1SH3\s0.
+.IP "\fB\-m3e\fR" 4
+.IX Item "-m3e"
+Generate code for the SH3e.
+.IP "\fB\-m4\-nofpu\fR" 4
+.IX Item "-m4-nofpu"
+Generate code for the \s-1SH4\s0 without a floating-point unit.
+.IP "\fB\-m4\-single\-only\fR" 4
+.IX Item "-m4-single-only"
+Generate code for the \s-1SH4\s0 with a floating-point unit that only
+supports single-precision arithmetic.
+.IP "\fB\-m4\-single\fR" 4
+.IX Item "-m4-single"
+Generate code for the \s-1SH4\s0 assuming the floating-point unit is in
+single-precision mode by default.
+.IP "\fB\-m4\fR" 4
+.IX Item "-m4"
+Generate code for the \s-1SH4\s0.
+.IP "\fB\-mb\fR" 4
+.IX Item "-mb"
+Compile code for the processor in big endian mode.
+.IP "\fB\-ml\fR" 4
+.IX Item "-ml"
+Compile code for the processor in little endian mode.
+.IP "\fB\-mdalign\fR" 4
+.IX Item "-mdalign"
+Align doubles at 64\-bit boundaries.  Note that this changes the calling
+conventions, and thus some functions from the standard C library will
+not work unless you recompile it first with \fB\-mdalign\fR.
+.IP "\fB\-mrelax\fR" 4
+.IX Item "-mrelax"
+Shorten some address references at link time, when possible; uses the
+linker option \fB\-relax\fR.
+.IP "\fB\-mbigtable\fR" 4
+.IX Item "-mbigtable"
+Use 32\-bit offsets in \f(CW\*(C`switch\*(C'\fR tables.  The default is to use
+16\-bit offsets.
+.IP "\fB\-mfmovd\fR" 4
+.IX Item "-mfmovd"
+Enable the use of the instruction \f(CW\*(C`fmovd\*(C'\fR.
+.IP "\fB\-mhitachi\fR" 4
+.IX Item "-mhitachi"
+Comply with the calling conventions defined by Renesas.
+.IP "\fB\-mnomacsave\fR" 4
+.IX Item "-mnomacsave"
+Mark the \f(CW\*(C`MAC\*(C'\fR register as call\-clobbered, even if
+\&\fB\-mhitachi\fR is given.
+.IP "\fB\-mieee\fR" 4
+.IX Item "-mieee"
+Increase IEEE-compliance of floating-point code.
+.IP "\fB\-misize\fR" 4
+.IX Item "-misize"
+Dump instruction size and location in the assembly code.
+.IP "\fB\-mpadstruct\fR" 4
+.IX Item "-mpadstruct"
+This option is deprecated.  It pads structures to multiple of 4 bytes,
+which is incompatible with the \s-1SH\s0 \s-1ABI\s0.
+.IP "\fB\-mspace\fR" 4
+.IX Item "-mspace"
+Optimize for space instead of speed.  Implied by \fB\-Os\fR.
+.IP "\fB\-mprefergot\fR" 4
+.IX Item "-mprefergot"
+When generating position-independent code, emit function calls using
+the Global Offset Table instead of the Procedure Linkage Table.
+.IP "\fB\-musermode\fR" 4
+.IX Item "-musermode"
+Generate a library function call to invalidate instruction cache
+entries, after fixing up a trampoline.  This library function call
+doesn't assume it can write to the whole memory address space.  This
+is the default when the target is \f(CW\*(C`sh\-*\-linux*\*(C'\fR.
+.PP
+\fIOptions for System V\fR
+.IX Subsection "Options for System V"
+.PP
+These additional options are available on System V Release 4 for
+compatibility with other compilers on those systems:
+.IP "\fB\-G\fR" 4
+.IX Item "-G"
+Create a shared object.
+It is recommended that \fB\-symbolic\fR or \fB\-shared\fR be used instead.
+.IP "\fB\-Qy\fR" 4
+.IX Item "-Qy"
+Identify the versions of each tool used by the compiler, in a
+\&\f(CW\*(C`.ident\*(C'\fR assembler directive in the output.
+.IP "\fB\-Qn\fR" 4
+.IX Item "-Qn"
+Refrain from adding \f(CW\*(C`.ident\*(C'\fR directives to the output file (this is
+the default).
+.IP "\fB\-YP,\fR\fIdirs\fR" 4
+.IX Item "-YP,dirs"
+Search the directories \fIdirs\fR, and no others, for libraries
+specified with \fB\-l\fR.
+.IP "\fB\-Ym,\fR\fIdir\fR" 4
+.IX Item "-Ym,dir"
+Look in the directory \fIdir\fR to find the M4 preprocessor.
+The assembler uses this option.
+.PP
+\fITMS320C3x/C4x Options\fR
+.IX Subsection "TMS320C3x/C4x Options"
+.PP
+These \fB\-m\fR options are defined for TMS320C3x/C4x implementations:
+.IP "\fB\-mcpu=\fR\fIcpu_type\fR" 4
+.IX Item "-mcpu=cpu_type"
+Set the instruction set, register set, and instruction scheduling
+parameters for machine type \fIcpu_type\fR.  Supported values for
+\&\fIcpu_type\fR are \fBc30\fR, \fBc31\fR, \fBc32\fR, \fBc40\fR, and
+\&\fBc44\fR.  The default is \fBc40\fR to generate code for the
+\&\s-1TMS320C40\s0.
+.IP "\fB\-mbig\-memory\fR" 4
+.IX Item "-mbig-memory"
+.PD 0
+.IP "\fB\-mbig\fR" 4
+.IX Item "-mbig"
+.IP "\fB\-msmall\-memory\fR" 4
+.IX Item "-msmall-memory"
+.IP "\fB\-msmall\fR" 4
+.IX Item "-msmall"
+.PD
+Generates code for the big or small memory model.  The small memory
+model assumed that all data fits into one 64K word page.  At run-time
+the data page (\s-1DP\s0) register must be set to point to the 64K page
+containing the .bss and .data program sections.  The big memory model is
+the default and requires reloading of the \s-1DP\s0 register for every direct
+memory access.
+.IP "\fB\-mbk\fR" 4
+.IX Item "-mbk"
+.PD 0
+.IP "\fB\-mno\-bk\fR" 4
+.IX Item "-mno-bk"
+.PD
+Allow (disallow) allocation of general integer operands into the block
+count register \s-1BK\s0.
+.IP "\fB\-mdb\fR" 4
+.IX Item "-mdb"
+.PD 0
+.IP "\fB\-mno\-db\fR" 4
+.IX Item "-mno-db"
+.PD
+Enable (disable) generation of code using decrement and branch,
+DBcond(D), instructions.  This is enabled by default for the C4x.  To be
+on the safe side, this is disabled for the C3x, since the maximum
+iteration count on the C3x is 2^{23 + 1} (but who iterates loops more than
+2^{23} times on the C3x?).  Note that \s-1GCC\s0 will try to reverse a loop so
+that it can utilize the decrement and branch instruction, but will give
+up if there is more than one memory reference in the loop.  Thus a loop
+where the loop counter is decremented can generate slightly more
+efficient code, in cases where the \s-1RPTB\s0 instruction cannot be utilized.
+.IP "\fB\-mdp\-isr\-reload\fR" 4
+.IX Item "-mdp-isr-reload"
+.PD 0
+.IP "\fB\-mparanoid\fR" 4
+.IX Item "-mparanoid"
+.PD
+Force the \s-1DP\s0 register to be saved on entry to an interrupt service
+routine (\s-1ISR\s0), reloaded to point to the data section, and restored on
+exit from the \s-1ISR\s0.  This should not be required unless someone has
+violated the small memory model by modifying the \s-1DP\s0 register, say within
+an object library.
+.IP "\fB\-mmpyi\fR" 4
+.IX Item "-mmpyi"
+.PD 0
+.IP "\fB\-mno\-mpyi\fR" 4
+.IX Item "-mno-mpyi"
+.PD
+For the C3x use the 24\-bit \s-1MPYI\s0 instruction for integer multiplies
+instead of a library call to guarantee 32\-bit results.  Note that if one
+of the operands is a constant, then the multiplication will be performed
+using shifts and adds.  If the \fB\-mmpyi\fR option is not specified for the C3x,
+then squaring operations are performed inline instead of a library call.
+.IP "\fB\-mfast\-fix\fR" 4
+.IX Item "-mfast-fix"
+.PD 0
+.IP "\fB\-mno\-fast\-fix\fR" 4
+.IX Item "-mno-fast-fix"
+.PD
+The C3x/C4x \s-1FIX\s0 instruction to convert a floating point value to an
+integer value chooses the nearest integer less than or equal to the
+floating point value rather than to the nearest integer.  Thus if the
+floating point number is negative, the result will be incorrectly
+truncated an additional code is necessary to detect and correct this
+case.  This option can be used to disable generation of the additional
+code required to correct the result.
+.IP "\fB\-mrptb\fR" 4
+.IX Item "-mrptb"
+.PD 0
+.IP "\fB\-mno\-rptb\fR" 4
+.IX Item "-mno-rptb"
+.PD
+Enable (disable) generation of repeat block sequences using the \s-1RPTB\s0
+instruction for zero overhead looping.  The \s-1RPTB\s0 construct is only used
+for innermost loops that do not call functions or jump across the loop
+boundaries.  There is no advantage having nested \s-1RPTB\s0 loops due to the
+overhead required to save and restore the \s-1RC\s0, \s-1RS\s0, and \s-1RE\s0 registers.
+This is enabled by default with \fB\-O2\fR.
+.IP "\fB\-mrpts=\fR\fIcount\fR" 4
+.IX Item "-mrpts=count"
+.PD 0
+.IP "\fB\-mno\-rpts\fR" 4
+.IX Item "-mno-rpts"
+.PD
+Enable (disable) the use of the single instruction repeat instruction
+\&\s-1RPTS\s0.  If a repeat block contains a single instruction, and the loop
+count can be guaranteed to be less than the value \fIcount\fR, \s-1GCC\s0 will
+emit a \s-1RPTS\s0 instruction instead of a \s-1RPTB\s0.  If no value is specified,
+then a \s-1RPTS\s0 will be emitted even if the loop count cannot be determined
+at compile time.  Note that the repeated instruction following \s-1RPTS\s0 does
+not have to be reloaded from memory each iteration, thus freeing up the
+\&\s-1CPU\s0 buses for operands.  However, since interrupts are blocked by this
+instruction, it is disabled by default.
+.IP "\fB\-mloop\-unsigned\fR" 4
+.IX Item "-mloop-unsigned"
+.PD 0
+.IP "\fB\-mno\-loop\-unsigned\fR" 4
+.IX Item "-mno-loop-unsigned"
+.PD
+The maximum iteration count when using \s-1RPTS\s0 and \s-1RPTB\s0 (and \s-1DB\s0 on the C40)
+is 2^{31 + 1} since these instructions test if the iteration count is
+negative to terminate the loop.  If the iteration count is unsigned
+there is a possibility than the 2^{31 + 1} maximum iteration count may be
+exceeded.  This switch allows an unsigned iteration count.
+.IP "\fB\-mti\fR" 4
+.IX Item "-mti"
+Try to emit an assembler syntax that the \s-1TI\s0 assembler (asm30) is happy
+with.  This also enforces compatibility with the \s-1API\s0 employed by the \s-1TI\s0
+C3x C compiler.  For example, long doubles are passed as structures
+rather than in floating point registers.
+.IP "\fB\-mregparm\fR" 4
+.IX Item "-mregparm"
+.PD 0
+.IP "\fB\-mmemparm\fR" 4
+.IX Item "-mmemparm"
+.PD
+Generate code that uses registers (stack) for passing arguments to functions.
+By default, arguments are passed in registers where possible rather
+than by pushing arguments on to the stack.
+.IP "\fB\-mparallel\-insns\fR" 4
+.IX Item "-mparallel-insns"
+.PD 0
+.IP "\fB\-mno\-parallel\-insns\fR" 4
+.IX Item "-mno-parallel-insns"
+.PD
+Allow the generation of parallel instructions.  This is enabled by
+default with \fB\-O2\fR.
+.IP "\fB\-mparallel\-mpy\fR" 4
+.IX Item "-mparallel-mpy"
+.PD 0
+.IP "\fB\-mno\-parallel\-mpy\fR" 4
+.IX Item "-mno-parallel-mpy"
+.PD
+Allow the generation of MPY||ADD and MPY||SUB parallel instructions,
+provided \fB\-mparallel\-insns\fR is also specified.  These instructions have
+tight register constraints which can pessimize the code generation
+of large functions.
+.PP
+\fIV850 Options\fR
+.IX Subsection "V850 Options"
+.PP
+These \fB\-m\fR options are defined for V850 implementations:
+.IP "\fB\-mlong\-calls\fR" 4
+.IX Item "-mlong-calls"
+.PD 0
+.IP "\fB\-mno\-long\-calls\fR" 4
+.IX Item "-mno-long-calls"
+.PD
+Treat all calls as being far away (near).  If calls are assumed to be
+far away, the compiler will always load the functions address up into a
+register, and call indirect through the pointer.
+.IP "\fB\-mno\-ep\fR" 4
+.IX Item "-mno-ep"
+.PD 0
+.IP "\fB\-mep\fR" 4
+.IX Item "-mep"
+.PD
+Do not optimize (do optimize) basic blocks that use the same index
+pointer 4 or more times to copy pointer into the \f(CW\*(C`ep\*(C'\fR register, and
+use the shorter \f(CW\*(C`sld\*(C'\fR and \f(CW\*(C`sst\*(C'\fR instructions.  The \fB\-mep\fR
+option is on by default if you optimize.
+.IP "\fB\-mno\-prolog\-function\fR" 4
+.IX Item "-mno-prolog-function"
+.PD 0
+.IP "\fB\-mprolog\-function\fR" 4
+.IX Item "-mprolog-function"
+.PD
+Do not use (do use) external functions to save and restore registers
+at the prologue and epilogue of a function.  The external functions
+are slower, but use less code space if more than one function saves
+the same number of registers.  The \fB\-mprolog\-function\fR option
+is on by default if you optimize.
+.IP "\fB\-mspace\fR" 4
+.IX Item "-mspace"
+Try to make the code as small as possible.  At present, this just turns
+on the \fB\-mep\fR and \fB\-mprolog\-function\fR options.
+.IP "\fB\-mtda=\fR\fIn\fR" 4
+.IX Item "-mtda=n"
+Put static or global variables whose size is \fIn\fR bytes or less into
+the tiny data area that register \f(CW\*(C`ep\*(C'\fR points to.  The tiny data
+area can hold up to 256 bytes in total (128 bytes for byte references).
+.IP "\fB\-msda=\fR\fIn\fR" 4
+.IX Item "-msda=n"
+Put static or global variables whose size is \fIn\fR bytes or less into
+the small data area that register \f(CW\*(C`gp\*(C'\fR points to.  The small data
+area can hold up to 64 kilobytes.
+.IP "\fB\-mzda=\fR\fIn\fR" 4
+.IX Item "-mzda=n"
+Put static or global variables whose size is \fIn\fR bytes or less into
+the first 32 kilobytes of memory.
+.IP "\fB\-mv850\fR" 4
+.IX Item "-mv850"
+Specify that the target processor is the V850.
+.IP "\fB\-mbig\-switch\fR" 4
+.IX Item "-mbig-switch"
+Generate code suitable for big switch tables.  Use this option only if
+the assembler/linker complain about out of range branches within a switch
+table.
+.IP "\fB\-mapp\-regs\fR" 4
+.IX Item "-mapp-regs"
+This option will cause r2 and r5 to be used in the code generated by
+the compiler.  This setting is the default.
+.IP "\fB\-mno\-app\-regs\fR" 4
+.IX Item "-mno-app-regs"
+This option will cause r2 and r5 to be treated as fixed registers.
+.IP "\fB\-mv850e1\fR" 4
+.IX Item "-mv850e1"
+Specify that the target processor is the V850E1.  The preprocessor
+constants \fB_\|_v850e1_\|_\fR and \fB_\|_v850e_\|_\fR will be defined if
+this option is used.
+.IP "\fB\-mv850e\fR" 4
+.IX Item "-mv850e"
+Specify that the target processor is the V850E.  The preprocessor
+constant \fB_\|_v850e_\|_\fR will be defined if this option is used.
+.Sp
+If neither \fB\-mv850\fR nor \fB\-mv850e\fR nor \fB\-mv850e1\fR
+are defined then a default target processor will be chosen and the
+relevant \fB_\|_v850*_\|_\fR preprocessor constant will be defined.
+.Sp
+The preprocessor constants \fB_\|_v850\fR and \fB_\|_v851_\|_\fR are always
+defined, regardless of which processor variant is the target.
+.IP "\fB\-mdisable\-callt\fR" 4
+.IX Item "-mdisable-callt"
+This option will suppress generation of the \s-1CALLT\s0 instruction for the
+v850e and v850e1 flavors of the v850 architecture.  The default is
+\&\fB\-mno\-disable\-callt\fR which allows the \s-1CALLT\s0 instruction to be used.
+.PP
+\fI\s-1ARC\s0 Options\fR
+.IX Subsection "ARC Options"
+.PP
+These options are defined for \s-1ARC\s0 implementations:
+.IP "\fB\-EL\fR" 4
+.IX Item "-EL"
+Compile code for little endian mode.  This is the default.
+.IP "\fB\-EB\fR" 4
+.IX Item "-EB"
+Compile code for big endian mode.
+.IP "\fB\-mmangle\-cpu\fR" 4
+.IX Item "-mmangle-cpu"
+Prepend the name of the cpu to all public symbol names.
+In multiple-processor systems, there are many \s-1ARC\s0 variants with different
+instruction and register set characteristics.  This flag prevents code
+compiled for one cpu to be linked with code compiled for another.
+No facility exists for handling variants that are ``almost identical''.
+This is an all or nothing option.
+.IP "\fB\-mcpu=\fR\fIcpu\fR" 4
+.IX Item "-mcpu=cpu"
+Compile code for \s-1ARC\s0 variant \fIcpu\fR.
+Which variants are supported depend on the configuration.
+All variants support \fB\-mcpu=base\fR, this is the default.
+.IP "\fB\-mtext=\fR\fItext-section\fR" 4
+.IX Item "-mtext=text-section"
+.PD 0
+.IP "\fB\-mdata=\fR\fIdata-section\fR" 4
+.IX Item "-mdata=data-section"
+.IP "\fB\-mrodata=\fR\fIreadonly-data-section\fR" 4
+.IX Item "-mrodata=readonly-data-section"
+.PD
+Put functions, data, and readonly data in \fItext-section\fR,
+\&\fIdata-section\fR, and \fIreadonly-data-section\fR respectively
+by default.  This can be overridden with the \f(CW\*(C`section\*(C'\fR attribute.
+.PP
+\fI\s-1NS32K\s0 Options\fR
+.IX Subsection "NS32K Options"
+.PP
+These are the \fB\-m\fR options defined for the 32000 series.  The default
+values for these options depends on which style of 32000 was selected when
+the compiler was configured; the defaults for the most common choices are
+given below.
+.IP "\fB\-m32032\fR" 4
+.IX Item "-m32032"
+.PD 0
+.IP "\fB\-m32032\fR" 4
+.IX Item "-m32032"
+.PD
+Generate output for a 32032.  This is the default
+when the compiler is configured for 32032 and 32016 based systems.
+.IP "\fB\-m32332\fR" 4
+.IX Item "-m32332"
+.PD 0
+.IP "\fB\-m32332\fR" 4
+.IX Item "-m32332"
+.PD
+Generate output for a 32332.  This is the default
+when the compiler is configured for 32332\-based systems.
+.IP "\fB\-m32532\fR" 4
+.IX Item "-m32532"
+.PD 0
+.IP "\fB\-m32532\fR" 4
+.IX Item "-m32532"
+.PD
+Generate output for a 32532.  This is the default
+when the compiler is configured for 32532\-based systems.
+.IP "\fB\-m32081\fR" 4
+.IX Item "-m32081"
+Generate output containing 32081 instructions for floating point.
+This is the default for all systems.
+.IP "\fB\-m32381\fR" 4
+.IX Item "-m32381"
+Generate output containing 32381 instructions for floating point.  This
+also implies \fB\-m32081\fR.  The 32381 is only compatible with the 32332
+and 32532 cpus.  This is the default for the pc532\-netbsd configuration.
+.IP "\fB\-mmulti\-add\fR" 4
+.IX Item "-mmulti-add"
+Try and generate multiply-add floating point instructions \f(CW\*(C`polyF\*(C'\fR
+and \f(CW\*(C`dotF\*(C'\fR.  This option is only available if the \fB\-m32381\fR
+option is in effect.  Using these instructions requires changes to
+register allocation which generally has a negative impact on
+performance.  This option should only be enabled when compiling code
+particularly likely to make heavy use of multiply-add instructions.
+.IP "\fB\-mnomulti\-add\fR" 4
+.IX Item "-mnomulti-add"
+Do not try and generate multiply-add floating point instructions
+\&\f(CW\*(C`polyF\*(C'\fR and \f(CW\*(C`dotF\*(C'\fR.  This is the default on all platforms.
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+Generate output containing library calls for floating point.
+\&\fBWarning:\fR the requisite libraries may not be available.
+.IP "\fB\-mieee\-compare\fR" 4
+.IX Item "-mieee-compare"
+.PD 0
+.IP "\fB\-mno\-ieee\-compare\fR" 4
+.IX Item "-mno-ieee-compare"
+.PD
+Control whether or not the compiler uses \s-1IEEE\s0 floating point
+comparisons.  These handle correctly the case where the result of a
+comparison is unordered.
+\&\fBWarning:\fR the requisite kernel support may not be available.
+.IP "\fB\-mnobitfield\fR" 4
+.IX Item "-mnobitfield"
+Do not use the bit-field instructions.  On some machines it is faster to
+use shifting and masking operations.  This is the default for the pc532.
+.IP "\fB\-mbitfield\fR" 4
+.IX Item "-mbitfield"
+Do use the bit-field instructions.  This is the default for all platforms
+except the pc532.
+.IP "\fB\-mrtd\fR" 4
+.IX Item "-mrtd"
+Use a different function-calling convention, in which functions
+that take a fixed number of arguments return pop their
+arguments on return with the \f(CW\*(C`ret\*(C'\fR instruction.
+.Sp
+This calling convention is incompatible with the one normally
+used on Unix, so you cannot use it if you need to call libraries
+compiled with the Unix compiler.
+.Sp
+Also, you must provide function prototypes for all functions that
+take variable numbers of arguments (including \f(CW\*(C`printf\*(C'\fR);
+otherwise incorrect code will be generated for calls to those
+functions.
+.Sp
+In addition, seriously incorrect code will result if you call a
+function with too many arguments.  (Normally, extra arguments are
+harmlessly ignored.)
+.Sp
+This option takes its name from the 680x0 \f(CW\*(C`rtd\*(C'\fR instruction.
+.IP "\fB\-mregparam\fR" 4
+.IX Item "-mregparam"
+Use a different function-calling convention where the first two arguments
+are passed in registers.
+.Sp
+This calling convention is incompatible with the one normally
+used on Unix, so you cannot use it if you need to call libraries
+compiled with the Unix compiler.
+.IP "\fB\-mnoregparam\fR" 4
+.IX Item "-mnoregparam"
+Do not pass any arguments in registers.  This is the default for all
+targets.
+.IP "\fB\-msb\fR" 4
+.IX Item "-msb"
+It is \s-1OK\s0 to use the sb as an index register which is always loaded with
+zero.  This is the default for the pc532\-netbsd target.
+.IP "\fB\-mnosb\fR" 4
+.IX Item "-mnosb"
+The sb register is not available for use or has not been initialized to
+zero by the run time system.  This is the default for all targets except
+the pc532\-netbsd.  It is also implied whenever \fB\-mhimem\fR or
+\&\fB\-fpic\fR is set.
+.IP "\fB\-mhimem\fR" 4
+.IX Item "-mhimem"
+Many ns32000 series addressing modes use displacements of up to 512MB.
+If an address is above 512MB then displacements from zero can not be used.
+This option causes code to be generated which can be loaded above 512MB.
+This may be useful for operating systems or \s-1ROM\s0 code.
+.IP "\fB\-mnohimem\fR" 4
+.IX Item "-mnohimem"
+Assume code will be loaded in the first 512MB of virtual address space.
+This is the default for all platforms.
+.PP
+\fI\s-1AVR\s0 Options\fR
+.IX Subsection "AVR Options"
+.PP
+These options are defined for \s-1AVR\s0 implementations:
+.IP "\fB\-mmcu=\fR\fImcu\fR" 4
+.IX Item "-mmcu=mcu"
+Specify \s-1ATMEL\s0 \s-1AVR\s0 instruction set or \s-1MCU\s0 type.
+.Sp
+Instruction set avr1 is for the minimal \s-1AVR\s0 core, not supported by the C
+compiler, only for assembler programs (\s-1MCU\s0 types: at90s1200, attiny10,
+attiny11, attiny12, attiny15, attiny28).
+.Sp
+Instruction set avr2 (default) is for the classic \s-1AVR\s0 core with up to
+8K program memory space (\s-1MCU\s0 types: at90s2313, at90s2323, attiny22,
+at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515,
+at90c8534, at90s8535).
+.Sp
+Instruction set avr3 is for the classic \s-1AVR\s0 core with up to 128K program
+memory space (\s-1MCU\s0 types: atmega103, atmega603, at43usb320, at76c711).
+.Sp
+Instruction set avr4 is for the enhanced \s-1AVR\s0 core with up to 8K program
+memory space (\s-1MCU\s0 types: atmega8, atmega83, atmega85).
+.Sp
+Instruction set avr5 is for the enhanced \s-1AVR\s0 core with up to 128K program
+memory space (\s-1MCU\s0 types: atmega16, atmega161, atmega163, atmega32, atmega323,
+atmega64, atmega128, at43usb355, at94k).
+.IP "\fB\-msize\fR" 4
+.IX Item "-msize"
+Output instruction sizes to the asm file.
+.IP "\fB\-minit\-stack=\fR\fIN\fR" 4
+.IX Item "-minit-stack=N"
+Specify the initial stack address, which may be a symbol or numeric value,
+\&\fB_\|_stack\fR is the default.
+.IP "\fB\-mno\-interrupts\fR" 4
+.IX Item "-mno-interrupts"
+Generated code is not compatible with hardware interrupts.
+Code size will be smaller.
+.IP "\fB\-mcall\-prologues\fR" 4
+.IX Item "-mcall-prologues"
+Functions prologues/epilogues expanded as call to appropriate
+subroutines.  Code size will be smaller.
+.IP "\fB\-mno\-tablejump\fR" 4
+.IX Item "-mno-tablejump"
+Do not generate tablejump insns which sometimes increase code size.
+.IP "\fB\-mtiny\-stack\fR" 4
+.IX Item "-mtiny-stack"
+Change only the low 8 bits of the stack pointer.
+.PP
+\fIMCore Options\fR
+.IX Subsection "MCore Options"
+.PP
+These are the \fB\-m\fR options defined for the Motorola M*Core
+processors.
+.IP "\fB\-mhardlit\fR" 4
+.IX Item "-mhardlit"
+.PD 0
+.IP "\fB\-mno\-hardlit\fR" 4
+.IX Item "-mno-hardlit"
+.PD
+Inline constants into the code stream if it can be done in two
+instructions or less.
+.IP "\fB\-mdiv\fR" 4
+.IX Item "-mdiv"
+.PD 0
+.IP "\fB\-mno\-div\fR" 4
+.IX Item "-mno-div"
+.PD
+Use the divide instruction.  (Enabled by default).
+.IP "\fB\-mrelax\-immediate\fR" 4
+.IX Item "-mrelax-immediate"
+.PD 0
+.IP "\fB\-mno\-relax\-immediate\fR" 4
+.IX Item "-mno-relax-immediate"
+.PD
+Allow arbitrary sized immediates in bit operations.
+.IP "\fB\-mwide\-bitfields\fR" 4
+.IX Item "-mwide-bitfields"
+.PD 0
+.IP "\fB\-mno\-wide\-bitfields\fR" 4
+.IX Item "-mno-wide-bitfields"
+.PD
+Always treat bit-fields as int\-sized.
+.IP "\fB\-m4byte\-functions\fR" 4
+.IX Item "-m4byte-functions"
+.PD 0
+.IP "\fB\-mno\-4byte\-functions\fR" 4
+.IX Item "-mno-4byte-functions"
+.PD
+Force all functions to be aligned to a four byte boundary.
+.IP "\fB\-mcallgraph\-data\fR" 4
+.IX Item "-mcallgraph-data"
+.PD 0
+.IP "\fB\-mno\-callgraph\-data\fR" 4
+.IX Item "-mno-callgraph-data"
+.PD
+Emit callgraph information.
+.IP "\fB\-mslow\-bytes\fR" 4
+.IX Item "-mslow-bytes"
+.PD 0
+.IP "\fB\-mno\-slow\-bytes\fR" 4
+.IX Item "-mno-slow-bytes"
+.PD
+Prefer word access when reading byte quantities.
+.IP "\fB\-mlittle\-endian\fR" 4
+.IX Item "-mlittle-endian"
+.PD 0
+.IP "\fB\-mbig\-endian\fR" 4
+.IX Item "-mbig-endian"
+.PD
+Generate code for a little endian target.
+.IP "\fB\-m210\fR" 4
+.IX Item "-m210"
+.PD 0
+.IP "\fB\-m340\fR" 4
+.IX Item "-m340"
+.PD
+Generate code for the 210 processor.
+.PP
+\fI\s-1IA\-64\s0 Options\fR
+.IX Subsection "IA-64 Options"
+.PP
+These are the \fB\-m\fR options defined for the Intel \s-1IA\-64\s0 architecture.
+.IP "\fB\-mbig\-endian\fR" 4
+.IX Item "-mbig-endian"
+Generate code for a big endian target.  This is the default for \s-1HP\-UX\s0.
+.IP "\fB\-mlittle\-endian\fR" 4
+.IX Item "-mlittle-endian"
+Generate code for a little endian target.  This is the default for \s-1AIX5\s0
+and GNU/Linux.
+.IP "\fB\-mgnu\-as\fR" 4
+.IX Item "-mgnu-as"
+.PD 0
+.IP "\fB\-mno\-gnu\-as\fR" 4
+.IX Item "-mno-gnu-as"
+.PD
+Generate (or don't) code for the \s-1GNU\s0 assembler.  This is the default.
+.IP "\fB\-mgnu\-ld\fR" 4
+.IX Item "-mgnu-ld"
+.PD 0
+.IP "\fB\-mno\-gnu\-ld\fR" 4
+.IX Item "-mno-gnu-ld"
+.PD
+Generate (or don't) code for the \s-1GNU\s0 linker.  This is the default.
+.IP "\fB\-mno\-pic\fR" 4
+.IX Item "-mno-pic"
+Generate code that does not use a global pointer register.  The result
+is not position independent code, and violates the \s-1IA\-64\s0 \s-1ABI\s0.
+.IP "\fB\-mvolatile\-asm\-stop\fR" 4
+.IX Item "-mvolatile-asm-stop"
+.PD 0
+.IP "\fB\-mno\-volatile\-asm\-stop\fR" 4
+.IX Item "-mno-volatile-asm-stop"
+.PD
+Generate (or don't) a stop bit immediately before and after volatile asm
+statements.
+.IP "\fB\-mb\-step\fR" 4
+.IX Item "-mb-step"
+Generate code that works around Itanium B step errata.
+.IP "\fB\-mregister\-names\fR" 4
+.IX Item "-mregister-names"
+.PD 0
+.IP "\fB\-mno\-register\-names\fR" 4
+.IX Item "-mno-register-names"
+.PD
+Generate (or don't) \fBin\fR, \fBloc\fR, and \fBout\fR register names for
+the stacked registers.  This may make assembler output more readable.
+.IP "\fB\-mno\-sdata\fR" 4
+.IX Item "-mno-sdata"
+.PD 0
+.IP "\fB\-msdata\fR" 4
+.IX Item "-msdata"
+.PD
+Disable (or enable) optimizations that use the small data section.  This may
+be useful for working around optimizer bugs.
+.IP "\fB\-mconstant\-gp\fR" 4
+.IX Item "-mconstant-gp"
+Generate code that uses a single constant global pointer value.  This is
+useful when compiling kernel code.
+.IP "\fB\-mauto\-pic\fR" 4
+.IX Item "-mauto-pic"
+Generate code that is self\-relocatable.  This implies \fB\-mconstant\-gp\fR.
+This is useful when compiling firmware code.
+.IP "\fB\-minline\-float\-divide\-min\-latency\fR" 4
+.IX Item "-minline-float-divide-min-latency"
+Generate code for inline divides of floating point values
+using the minimum latency algorithm.
+.IP "\fB\-minline\-float\-divide\-max\-throughput\fR" 4
+.IX Item "-minline-float-divide-max-throughput"
+Generate code for inline divides of floating point values
+using the maximum throughput algorithm.
+.IP "\fB\-minline\-int\-divide\-min\-latency\fR" 4
+.IX Item "-minline-int-divide-min-latency"
+Generate code for inline divides of integer values
+using the minimum latency algorithm.
+.IP "\fB\-minline\-int\-divide\-max\-throughput\fR" 4
+.IX Item "-minline-int-divide-max-throughput"
+Generate code for inline divides of integer values
+using the maximum throughput algorithm.
+.IP "\fB\-mno\-dwarf2\-asm\fR" 4
+.IX Item "-mno-dwarf2-asm"
+.PD 0
+.IP "\fB\-mdwarf2\-asm\fR" 4
+.IX Item "-mdwarf2-asm"
+.PD
+Don't (or do) generate assembler code for the \s-1DWARF2\s0 line number debugging
+info.  This may be useful when not using the \s-1GNU\s0 assembler.
+.IP "\fB\-mfixed\-range=\fR\fIregister-range\fR" 4
+.IX Item "-mfixed-range=register-range"
+Generate code treating the given register range as fixed registers.
+A fixed register is one that the register allocator can not use.  This is
+useful when compiling kernel code.  A register range is specified as
+two registers separated by a dash.  Multiple register ranges can be
+specified separated by a comma.
+.IP "\fB\-mearly\-stop\-bits\fR" 4
+.IX Item "-mearly-stop-bits"
+.PD 0
+.IP "\fB\-mno\-early\-stop\-bits\fR" 4
+.IX Item "-mno-early-stop-bits"
+.PD
+Allow stop bits to be placed earlier than immediately preceding the
+instruction that triggered the stop bit.  This can improve instruction
+scheduling, but does not always do so.
+.PP
+\fID30V Options\fR
+.IX Subsection "D30V Options"
+.PP
+These \fB\-m\fR options are defined for D30V implementations:
+.IP "\fB\-mextmem\fR" 4
+.IX Item "-mextmem"
+Link the \fB.text\fR, \fB.data\fR, \fB.bss\fR, \fB.strings\fR,
+\&\fB.rodata\fR, \fB.rodata1\fR, \fB.data1\fR sections into external
+memory, which starts at location \f(CW0x80000000\fR.
+.IP "\fB\-mextmemory\fR" 4
+.IX Item "-mextmemory"
+Same as the \fB\-mextmem\fR switch.
+.IP "\fB\-monchip\fR" 4
+.IX Item "-monchip"
+Link the \fB.text\fR section into onchip text memory, which starts at
+location \f(CW0x0\fR.  Also link \fB.data\fR, \fB.bss\fR,
+\&\fB.strings\fR, \fB.rodata\fR, \fB.rodata1\fR, \fB.data1\fR sections
+into onchip data memory, which starts at location \f(CW0x20000000\fR.
+.IP "\fB\-mno\-asm\-optimize\fR" 4
+.IX Item "-mno-asm-optimize"
+.PD 0
+.IP "\fB\-masm\-optimize\fR" 4
+.IX Item "-masm-optimize"
+.PD
+Disable (enable) passing \fB\-O\fR to the assembler when optimizing.
+The assembler uses the \fB\-O\fR option to automatically parallelize
+adjacent short instructions where possible.
+.IP "\fB\-mbranch\-cost=\fR\fIn\fR" 4
+.IX Item "-mbranch-cost=n"
+Increase the internal costs of branches to \fIn\fR.  Higher costs means
+that the compiler will issue more instructions to avoid doing a branch.
+The default is 2.
+.IP "\fB\-mcond\-exec=\fR\fIn\fR" 4
+.IX Item "-mcond-exec=n"
+Specify the maximum number of conditionally executed instructions that
+replace a branch.  The default is 4.
+.PP
+\fIS/390 and zSeries Options\fR
+.IX Subsection "S/390 and zSeries Options"
+.PP
+These are the \fB\-m\fR options defined for the S/390 and zSeries architecture.
+.IP "\fB\-mhard\-float\fR" 4
+.IX Item "-mhard-float"
+.PD 0
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+.PD
+Use (do not use) the hardware floating-point instructions and registers
+for floating-point operations.  When \fB\-msoft\-float\fR is specified,
+functions in \fIlibgcc.a\fR will be used to perform floating-point
+operations.  When \fB\-mhard\-float\fR is specified, the compiler
+generates \s-1IEEE\s0 floating-point instructions.  This is the default.
+.IP "\fB\-mbackchain\fR" 4
+.IX Item "-mbackchain"
+.PD 0
+.IP "\fB\-mno\-backchain\fR" 4
+.IX Item "-mno-backchain"
+.PD
+Generate (or do not generate) code which maintains an explicit
+backchain within the stack frame that points to the caller's frame.
+This may be needed to allow debugging using tools that do not understand
+\&\s-1DWARF\-2\s0 call frame information.  The default is not to generate the
+backchain.
+.IP "\fB\-msmall\-exec\fR" 4
+.IX Item "-msmall-exec"
+.PD 0
+.IP "\fB\-mno\-small\-exec\fR" 4
+.IX Item "-mno-small-exec"
+.PD
+Generate (or do not generate) code using the \f(CW\*(C`bras\*(C'\fR instruction
+to do subroutine calls.
+This only works reliably if the total executable size does not
+exceed 64k.  The default is to use the \f(CW\*(C`basr\*(C'\fR instruction instead,
+which does not have this limitation.
+.IP "\fB\-m64\fR" 4
+.IX Item "-m64"
+.PD 0
+.IP "\fB\-m31\fR" 4
+.IX Item "-m31"
+.PD
+When \fB\-m31\fR is specified, generate code compliant to the
+GNU/Linux for S/390 \s-1ABI\s0.  When \fB\-m64\fR is specified, generate
+code compliant to the GNU/Linux for zSeries \s-1ABI\s0.  This allows \s-1GCC\s0 in
+particular to generate 64\-bit instructions.  For the \fBs390\fR
+targets, the default is \fB\-m31\fR, while the \fBs390x\fR
+targets default to \fB\-m64\fR.
+.IP "\fB\-mzarch\fR" 4
+.IX Item "-mzarch"
+.PD 0
+.IP "\fB\-mesa\fR" 4
+.IX Item "-mesa"
+.PD
+When \fB\-mzarch\fR is specified, generate code using the
+instructions available on z/Architecture.
+When \fB\-mesa\fR is specified, generate code using the
+instructions available on \s-1ESA/390\s0. Note that \fB\-mesa\fR is
+not possible with \fB\-m64\fR.
+When generating code compliant to the GNU/Linux for S/390 \s-1ABI\s0,
+the default is \fB\-mesa\fR.  When generating code compliant
+to the GNU/Linux for zSeries \s-1ABI\s0, the default is \fB\-mzarch\fR.
+.IP "\fB\-mmvcle\fR" 4
+.IX Item "-mmvcle"
+.PD 0
+.IP "\fB\-mno\-mvcle\fR" 4
+.IX Item "-mno-mvcle"
+.PD
+Generate (or do not generate) code using the \f(CW\*(C`mvcle\*(C'\fR instruction
+to perform block moves.  When \fB\-mno\-mvcle\fR is specified,
+use a \f(CW\*(C`mvc\*(C'\fR loop instead.  This is the default.
+.IP "\fB\-mdebug\fR" 4
+.IX Item "-mdebug"
+.PD 0
+.IP "\fB\-mno\-debug\fR" 4
+.IX Item "-mno-debug"
+.PD
+Print (or do not print) additional debug information when compiling.
+The default is to not print debug information.
+.IP "\fB\-march=\fR\fIcpu-type\fR" 4
+.IX Item "-march=cpu-type"
+Generate code that will run on \fIcpu-type\fR, which is the name of a system
+representing a certain processor type. Possible values for
+\&\fIcpu-type\fR are \fBg5\fR, \fBg6\fR, \fBz900\fR, and \fBz990\fR.
+When generating code using the instructions available on z/Architecture,
+the default is \fB\-march=z900\fR.  Otherwise, the default is
+\&\fB\-march=g5\fR.
+.IP "\fB\-mtune=\fR\fIcpu-type\fR" 4
+.IX Item "-mtune=cpu-type"
+Tune to \fIcpu-type\fR everything applicable about the generated code,
+except for the \s-1ABI\s0 and the set of available instructions.
+The list of \fIcpu-type\fR values is the same as for \fB\-march\fR.
+The default is the value used for \fB\-march\fR.
+.IP "\fB\-mfused\-madd\fR" 4
+.IX Item "-mfused-madd"
+.PD 0
+.IP "\fB\-mno\-fused\-madd\fR" 4
+.IX Item "-mno-fused-madd"
+.PD
+Generate code that uses (does not use) the floating point multiply and
+accumulate instructions.  These instructions are generated by default if
+hardware floating point is used.
+.PP
+\fI\s-1CRIS\s0 Options\fR
+.IX Subsection "CRIS Options"
+.PP
+These options are defined specifically for the \s-1CRIS\s0 ports.
+.IP "\fB\-march=\fR\fIarchitecture-type\fR" 4
+.IX Item "-march=architecture-type"
+.PD 0
+.IP "\fB\-mcpu=\fR\fIarchitecture-type\fR" 4
+.IX Item "-mcpu=architecture-type"
+.PD
+Generate code for the specified architecture.  The choices for
+\&\fIarchitecture-type\fR are \fBv3\fR, \fBv8\fR and \fBv10\fR for
+respectively \s-1ETRAX\s0\ 4, \s-1ETRAX\s0\ 100, and \s-1ETRAX\s0\ 100\ \s-1LX\s0.
+Default is \fBv0\fR except for cris\-axis\-linux\-gnu, where the default is
+\&\fBv10\fR.
+.IP "\fB\-mtune=\fR\fIarchitecture-type\fR" 4
+.IX Item "-mtune=architecture-type"
+Tune to \fIarchitecture-type\fR everything applicable about the generated
+code, except for the \s-1ABI\s0 and the set of available instructions.  The
+choices for \fIarchitecture-type\fR are the same as for
+\&\fB\-march=\fR\fIarchitecture-type\fR.
+.IP "\fB\-mmax\-stack\-frame=\fR\fIn\fR" 4
+.IX Item "-mmax-stack-frame=n"
+Warn when the stack frame of a function exceeds \fIn\fR bytes.
+.IP "\fB\-melinux\-stacksize=\fR\fIn\fR" 4
+.IX Item "-melinux-stacksize=n"
+Only available with the \fBcris-axis-aout\fR target.  Arranges for
+indications in the program to the kernel loader that the stack of the
+program should be set to \fIn\fR bytes.
+.IP "\fB\-metrax4\fR" 4
+.IX Item "-metrax4"
+.PD 0
+.IP "\fB\-metrax100\fR" 4
+.IX Item "-metrax100"
+.PD
+The options \fB\-metrax4\fR and \fB\-metrax100\fR are synonyms for
+\&\fB\-march=v3\fR and \fB\-march=v8\fR respectively.
+.IP "\fB\-mmul\-bug\-workaround\fR" 4
+.IX Item "-mmul-bug-workaround"
+.PD 0
+.IP "\fB\-mno\-mul\-bug\-workaround\fR" 4
+.IX Item "-mno-mul-bug-workaround"
+.PD
+Work around a bug in the \f(CW\*(C`muls\*(C'\fR and \f(CW\*(C`mulu\*(C'\fR instructions for \s-1CPU\s0
+models where it applies.  This option is active by default.
+.IP "\fB\-mpdebug\fR" 4
+.IX Item "-mpdebug"
+Enable CRIS-specific verbose debug-related information in the assembly
+code.  This option also has the effect to turn off the \fB#NO_APP\fR
+formatted-code indicator to the assembler at the beginning of the
+assembly file.
+.IP "\fB\-mcc\-init\fR" 4
+.IX Item "-mcc-init"
+Do not use condition-code results from previous instruction; always emit
+compare and test instructions before use of condition codes.
+.IP "\fB\-mno\-side\-effects\fR" 4
+.IX Item "-mno-side-effects"
+Do not emit instructions with side-effects in addressing modes other than
+post\-increment.
+.IP "\fB\-mstack\-align\fR" 4
+.IX Item "-mstack-align"
+.PD 0
+.IP "\fB\-mno\-stack\-align\fR" 4
+.IX Item "-mno-stack-align"
+.IP "\fB\-mdata\-align\fR" 4
+.IX Item "-mdata-align"
+.IP "\fB\-mno\-data\-align\fR" 4
+.IX Item "-mno-data-align"
+.IP "\fB\-mconst\-align\fR" 4
+.IX Item "-mconst-align"
+.IP "\fB\-mno\-const\-align\fR" 4
+.IX Item "-mno-const-align"
+.PD
+These options (no\-options) arranges (eliminate arrangements) for the
+stack\-frame, individual data and constants to be aligned for the maximum
+single data access size for the chosen \s-1CPU\s0 model.  The default is to
+arrange for 32\-bit alignment.  \s-1ABI\s0 details such as structure layout are
+not affected by these options.
+.IP "\fB\-m32\-bit\fR" 4
+.IX Item "-m32-bit"
+.PD 0
+.IP "\fB\-m16\-bit\fR" 4
+.IX Item "-m16-bit"
+.IP "\fB\-m8\-bit\fR" 4
+.IX Item "-m8-bit"
+.PD
+Similar to the stack\- data\- and const-align options above, these options
+arrange for stack\-frame, writable data and constants to all be 32\-bit,
+16\-bit or 8\-bit aligned.  The default is 32\-bit alignment.
+.IP "\fB\-mno\-prologue\-epilogue\fR" 4
+.IX Item "-mno-prologue-epilogue"
+.PD 0
+.IP "\fB\-mprologue\-epilogue\fR" 4
+.IX Item "-mprologue-epilogue"
+.PD
+With \fB\-mno\-prologue\-epilogue\fR, the normal function prologue and
+epilogue that sets up the stack-frame are omitted and no return
+instructions or return sequences are generated in the code.  Use this
+option only together with visual inspection of the compiled code: no
+warnings or errors are generated when call-saved registers must be saved,
+or storage for local variable needs to be allocated.
+.IP "\fB\-mno\-gotplt\fR" 4
+.IX Item "-mno-gotplt"
+.PD 0
+.IP "\fB\-mgotplt\fR" 4
+.IX Item "-mgotplt"
+.PD
+With \fB\-fpic\fR and \fB\-fPIC\fR, don't generate (do generate)
+instruction sequences that load addresses for functions from the \s-1PLT\s0 part
+of the \s-1GOT\s0 rather than (traditional on other architectures) calls to the
+\&\s-1PLT\s0.  The default is \fB\-mgotplt\fR.
+.IP "\fB\-maout\fR" 4
+.IX Item "-maout"
+Legacy no-op option only recognized with the cris-axis-aout target.
+.IP "\fB\-melf\fR" 4
+.IX Item "-melf"
+Legacy no-op option only recognized with the cris-axis-elf and
+cris-axis-linux-gnu targets.
+.IP "\fB\-melinux\fR" 4
+.IX Item "-melinux"
+Only recognized with the cris-axis-aout target, where it selects a
+GNU/linux\-like multilib, include files and instruction set for
+\&\fB\-march=v8\fR.
+.IP "\fB\-mlinux\fR" 4
+.IX Item "-mlinux"
+Legacy no-op option only recognized with the cris-axis-linux-gnu target.
+.IP "\fB\-sim\fR" 4
+.IX Item "-sim"
+This option, recognized for the cris-axis-aout and cris-axis-elf arranges
+to link with input-output functions from a simulator library.  Code,
+initialized data and zero-initialized data are allocated consecutively.
+.IP "\fB\-sim2\fR" 4
+.IX Item "-sim2"
+Like \fB\-sim\fR, but pass linker options to locate initialized data at
+0x40000000 and zero-initialized data at 0x80000000.
+.PP
+\fI\s-1MMIX\s0 Options\fR
+.IX Subsection "MMIX Options"
+.PP
+These options are defined for the \s-1MMIX:\s0
+.IP "\fB\-mlibfuncs\fR" 4
+.IX Item "-mlibfuncs"
+.PD 0
+.IP "\fB\-mno\-libfuncs\fR" 4
+.IX Item "-mno-libfuncs"
+.PD
+Specify that intrinsic library functions are being compiled, passing all
+values in registers, no matter the size.
+.IP "\fB\-mepsilon\fR" 4
+.IX Item "-mepsilon"
+.PD 0
+.IP "\fB\-mno\-epsilon\fR" 4
+.IX Item "-mno-epsilon"
+.PD
+Generate floating-point comparison instructions that compare with respect
+to the \f(CW\*(C`rE\*(C'\fR epsilon register.
+.IP "\fB\-mabi=mmixware\fR" 4
+.IX Item "-mabi=mmixware"
+.PD 0
+.IP "\fB\-mabi=gnu\fR" 4
+.IX Item "-mabi=gnu"
+.PD
+Generate code that passes function parameters and return values that (in
+the called function) are seen as registers \f(CW$0\fR and up, as opposed to
+the \s-1GNU\s0 \s-1ABI\s0 which uses global registers \f(CW$231\fR and up.
+.IP "\fB\-mzero\-extend\fR" 4
+.IX Item "-mzero-extend"
+.PD 0
+.IP "\fB\-mno\-zero\-extend\fR" 4
+.IX Item "-mno-zero-extend"
+.PD
+When reading data from memory in sizes shorter than 64 bits, use (do not
+use) zero-extending load instructions by default, rather than
+sign-extending ones.
+.IP "\fB\-mknuthdiv\fR" 4
+.IX Item "-mknuthdiv"
+.PD 0
+.IP "\fB\-mno\-knuthdiv\fR" 4
+.IX Item "-mno-knuthdiv"
+.PD
+Make the result of a division yielding a remainder have the same sign as
+the divisor.  With the default, \fB\-mno\-knuthdiv\fR, the sign of the
+remainder follows the sign of the dividend.  Both methods are
+arithmetically valid, the latter being almost exclusively used.
+.IP "\fB\-mtoplevel\-symbols\fR" 4
+.IX Item "-mtoplevel-symbols"
+.PD 0
+.IP "\fB\-mno\-toplevel\-symbols\fR" 4
+.IX Item "-mno-toplevel-symbols"
+.PD
+Prepend (do not prepend) a \fB:\fR to all global symbols, so the assembly
+code can be used with the \f(CW\*(C`PREFIX\*(C'\fR assembly directive.
+.IP "\fB\-melf\fR" 4
+.IX Item "-melf"
+Generate an executable in the \s-1ELF\s0 format, rather than the default
+\&\fBmmo\fR format used by the \fBmmix\fR simulator.
+.IP "\fB\-mbranch\-predict\fR" 4
+.IX Item "-mbranch-predict"
+.PD 0
+.IP "\fB\-mno\-branch\-predict\fR" 4
+.IX Item "-mno-branch-predict"
+.PD
+Use (do not use) the probable-branch instructions, when static branch
+prediction indicates a probable branch.
+.IP "\fB\-mbase\-addresses\fR" 4
+.IX Item "-mbase-addresses"
+.PD 0
+.IP "\fB\-mno\-base\-addresses\fR" 4
+.IX Item "-mno-base-addresses"
+.PD
+Generate (do not generate) code that uses \fIbase addresses\fR.  Using a
+base address automatically generates a request (handled by the assembler
+and the linker) for a constant to be set up in a global register.  The
+register is used for one or more base address requests within the range 0
+to 255 from the value held in the register.  The generally leads to short
+and fast code, but the number of different data items that can be
+addressed is limited.  This means that a program that uses lots of static
+data may require \fB\-mno\-base\-addresses\fR.
+.IP "\fB\-msingle\-exit\fR" 4
+.IX Item "-msingle-exit"
+.PD 0
+.IP "\fB\-mno\-single\-exit\fR" 4
+.IX Item "-mno-single-exit"
+.PD
+Force (do not force) generated code to have a single exit point in each
+function.
+.PP
+\fI\s-1PDP\-11\s0 Options\fR
+.IX Subsection "PDP-11 Options"
+.PP
+These options are defined for the \s-1PDP\-11:\s0
+.IP "\fB\-mfpu\fR" 4
+.IX Item "-mfpu"
+Use hardware \s-1FPP\s0 floating point.  This is the default.  (\s-1FIS\s0 floating
+point on the \s-1PDP\-11/40\s0 is not supported.)
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+Do not use hardware floating point.
+.IP "\fB\-mac0\fR" 4
+.IX Item "-mac0"
+Return floating-point results in ac0 (fr0 in Unix assembler syntax).
+.IP "\fB\-mno\-ac0\fR" 4
+.IX Item "-mno-ac0"
+Return floating-point results in memory.  This is the default.
+.IP "\fB\-m40\fR" 4
+.IX Item "-m40"
+Generate code for a \s-1PDP\-11/40\s0.
+.IP "\fB\-m45\fR" 4
+.IX Item "-m45"
+Generate code for a \s-1PDP\-11/45\s0.  This is the default.
+.IP "\fB\-m10\fR" 4
+.IX Item "-m10"
+Generate code for a \s-1PDP\-11/10\s0.
+.IP "\fB\-mbcopy\-builtin\fR" 4
+.IX Item "-mbcopy-builtin"
+Use inline \f(CW\*(C`movstrhi\*(C'\fR patterns for copying memory.  This is the
+default.
+.IP "\fB\-mbcopy\fR" 4
+.IX Item "-mbcopy"
+Do not use inline \f(CW\*(C`movstrhi\*(C'\fR patterns for copying memory.
+.IP "\fB\-mint16\fR" 4
+.IX Item "-mint16"
+.PD 0
+.IP "\fB\-mno\-int32\fR" 4
+.IX Item "-mno-int32"
+.PD
+Use 16\-bit \f(CW\*(C`int\*(C'\fR.  This is the default.
+.IP "\fB\-mint32\fR" 4
+.IX Item "-mint32"
+.PD 0
+.IP "\fB\-mno\-int16\fR" 4
+.IX Item "-mno-int16"
+.PD
+Use 32\-bit \f(CW\*(C`int\*(C'\fR.
+.IP "\fB\-mfloat64\fR" 4
+.IX Item "-mfloat64"
+.PD 0
+.IP "\fB\-mno\-float32\fR" 4
+.IX Item "-mno-float32"
+.PD
+Use 64\-bit \f(CW\*(C`float\*(C'\fR.  This is the default.
+.IP "\fB\-mfloat32\fR" 4
+.IX Item "-mfloat32"
+.PD 0
+.IP "\fB\-mno\-float64\fR" 4
+.IX Item "-mno-float64"
+.PD
+Use 32\-bit \f(CW\*(C`float\*(C'\fR.
+.IP "\fB\-mabshi\fR" 4
+.IX Item "-mabshi"
+Use \f(CW\*(C`abshi2\*(C'\fR pattern.  This is the default.
+.IP "\fB\-mno\-abshi\fR" 4
+.IX Item "-mno-abshi"
+Do not use \f(CW\*(C`abshi2\*(C'\fR pattern.
+.IP "\fB\-mbranch\-expensive\fR" 4
+.IX Item "-mbranch-expensive"
+Pretend that branches are expensive.  This is for experimenting with
+code generation only.
+.IP "\fB\-mbranch\-cheap\fR" 4
+.IX Item "-mbranch-cheap"
+Do not pretend that branches are expensive.  This is the default.
+.IP "\fB\-msplit\fR" 4
+.IX Item "-msplit"
+Generate code for a system with split I&D.
+.IP "\fB\-mno\-split\fR" 4
+.IX Item "-mno-split"
+Generate code for a system without split I&D.  This is the default.
+.IP "\fB\-munix\-asm\fR" 4
+.IX Item "-munix-asm"
+Use Unix assembler syntax.  This is the default when configured for
+\&\fBpdp11\-*\-bsd\fR.
+.IP "\fB\-mdec\-asm\fR" 4
+.IX Item "-mdec-asm"
+Use \s-1DEC\s0 assembler syntax.  This is the default when configured for any
+\&\s-1PDP\-11\s0 target other than \fBpdp11\-*\-bsd\fR.
+.PP
+\fIXstormy16 Options\fR
+.IX Subsection "Xstormy16 Options"
+.PP
+These options are defined for Xstormy16:
+.IP "\fB\-msim\fR" 4
+.IX Item "-msim"
+Choose startup files and linker script suitable for the simulator.
+.PP
+\fI\s-1FRV\s0 Options\fR
+.IX Subsection "FRV Options"
+.IP "\fB\-mgpr\-32\fR" 4
+.IX Item "-mgpr-32"
+Only use the first 32 general purpose registers.
+.IP "\fB\-mgpr\-64\fR" 4
+.IX Item "-mgpr-64"
+Use all 64 general purpose registers.
+.IP "\fB\-mfpr\-32\fR" 4
+.IX Item "-mfpr-32"
+Use only the first 32 floating point registers.
+.IP "\fB\-mfpr\-64\fR" 4
+.IX Item "-mfpr-64"
+Use all 64 floating point registers
+.IP "\fB\-mhard\-float\fR" 4
+.IX Item "-mhard-float"
+Use hardware instructions for floating point operations.
+.IP "\fB\-msoft\-float\fR" 4
+.IX Item "-msoft-float"
+Use library routines for floating point operations.
+.IP "\fB\-malloc\-cc\fR" 4
+.IX Item "-malloc-cc"
+Dynamically allocate condition code registers.
+.IP "\fB\-mfixed\-cc\fR" 4
+.IX Item "-mfixed-cc"
+Do not try to dynamically allocate condition code registers, only
+use \f(CW\*(C`icc0\*(C'\fR and \f(CW\*(C`fcc0\*(C'\fR.
+.IP "\fB\-mdword\fR" 4
+.IX Item "-mdword"
+Change \s-1ABI\s0 to use double word insns.
+.IP "\fB\-mno\-dword\fR" 4
+.IX Item "-mno-dword"
+Do not use double word instructions.
+.IP "\fB\-mdouble\fR" 4
+.IX Item "-mdouble"
+Use floating point double instructions.
+.IP "\fB\-mno\-double\fR" 4
+.IX Item "-mno-double"
+Do not use floating point double instructions.
+.IP "\fB\-mmedia\fR" 4
+.IX Item "-mmedia"
+Use media instructions.
+.IP "\fB\-mno\-media\fR" 4
+.IX Item "-mno-media"
+Do not use media instructions.
+.IP "\fB\-mmuladd\fR" 4
+.IX Item "-mmuladd"
+Use multiply and add/subtract instructions.
+.IP "\fB\-mno\-muladd\fR" 4
+.IX Item "-mno-muladd"
+Do not use multiply and add/subtract instructions.
+.IP "\fB\-mlibrary\-pic\fR" 4
+.IX Item "-mlibrary-pic"
+Enable \s-1PIC\s0 support for building libraries
+.IP "\fB\-macc\-4\fR" 4
+.IX Item "-macc-4"
+Use only the first four media accumulator registers.
+.IP "\fB\-macc\-8\fR" 4
+.IX Item "-macc-8"
+Use all eight media accumulator registers.
+.IP "\fB\-mpack\fR" 4
+.IX Item "-mpack"
+Pack \s-1VLIW\s0 instructions.
+.IP "\fB\-mno\-pack\fR" 4
+.IX Item "-mno-pack"
+Do not pack \s-1VLIW\s0 instructions.
+.IP "\fB\-mno\-eflags\fR" 4
+.IX Item "-mno-eflags"
+Do not mark \s-1ABI\s0 switches in e_flags.
+.IP "\fB\-mcond\-move\fR" 4
+.IX Item "-mcond-move"
+Enable the use of conditional-move instructions (default).
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mno\-cond\-move\fR" 4
+.IX Item "-mno-cond-move"
+Disable the use of conditional-move instructions.
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mscc\fR" 4
+.IX Item "-mscc"
+Enable the use of conditional set instructions (default).
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mno\-scc\fR" 4
+.IX Item "-mno-scc"
+Disable the use of conditional set instructions.
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mcond\-exec\fR" 4
+.IX Item "-mcond-exec"
+Enable the use of conditional execution (default).
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mno\-cond\-exec\fR" 4
+.IX Item "-mno-cond-exec"
+Disable the use of conditional execution.
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mvliw\-branch\fR" 4
+.IX Item "-mvliw-branch"
+Run a pass to pack branches into \s-1VLIW\s0 instructions (default).
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mno\-vliw\-branch\fR" 4
+.IX Item "-mno-vliw-branch"
+Do not run a pass to pack branches into \s-1VLIW\s0 instructions.
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mmulti\-cond\-exec\fR" 4
+.IX Item "-mmulti-cond-exec"
+Enable optimization of \f(CW\*(C`&&\*(C'\fR and \f(CW\*(C`||\*(C'\fR in conditional execution
+(default).
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mno\-multi\-cond\-exec\fR" 4
+.IX Item "-mno-multi-cond-exec"
+Disable optimization of \f(CW\*(C`&&\*(C'\fR and \f(CW\*(C`||\*(C'\fR in conditional execution.
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mnested\-cond\-exec\fR" 4
+.IX Item "-mnested-cond-exec"
+Enable nested conditional execution optimizations (default).
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mno\-nested\-cond\-exec\fR" 4
+.IX Item "-mno-nested-cond-exec"
+Disable nested conditional execution optimizations.
+.Sp
+This switch is mainly for debugging the compiler and will likely be removed
+in a future version.
+.IP "\fB\-mtomcat\-stats\fR" 4
+.IX Item "-mtomcat-stats"
+Cause gas to print out tomcat statistics.
+.IP "\fB\-mcpu=\fR\fIcpu\fR" 4
+.IX Item "-mcpu=cpu"
+Select the processor type for which to generate code.  Possible values are
+\&\fBsimple\fR, \fBtomcat\fR, \fBfr500\fR, \fBfr400\fR, \fBfr300\fR,
+\&\fBfrv\fR.
+.PP
+\fIXtensa Options\fR
+.IX Subsection "Xtensa Options"
+.PP
+These options are supported for Xtensa targets:
+.IP "\fB\-mconst16\fR" 4
+.IX Item "-mconst16"
+.PD 0
+.IP "\fB\-mno\-const16\fR" 4
+.IX Item "-mno-const16"
+.PD
+Enable or disable use of \f(CW\*(C`CONST16\*(C'\fR instructions for loading
+constant values.  The \f(CW\*(C`CONST16\*(C'\fR instruction is currently not a
+standard option from Tensilica.  When enabled, \f(CW\*(C`CONST16\*(C'\fR
+instructions are always used in place of the standard \f(CW\*(C`L32R\*(C'\fR
+instructions.  The use of \f(CW\*(C`CONST16\*(C'\fR is enabled by default only if
+the \f(CW\*(C`L32R\*(C'\fR instruction is not available.
+.IP "\fB\-mfused\-madd\fR" 4
+.IX Item "-mfused-madd"
+.PD 0
+.IP "\fB\-mno\-fused\-madd\fR" 4
+.IX Item "-mno-fused-madd"
+.PD
+Enable or disable use of fused multiply/add and multiply/subtract
+instructions in the floating-point option.  This has no effect if the
+floating-point option is not also enabled.  Disabling fused multiply/add
+and multiply/subtract instructions forces the compiler to use separate
+instructions for the multiply and add/subtract operations.  This may be
+desirable in some cases where strict \s-1IEEE\s0 754\-compliant results are
+required: the fused multiply add/subtract instructions do not round the
+intermediate result, thereby producing results with \fImore\fR bits of
+precision than specified by the \s-1IEEE\s0 standard.  Disabling fused multiply
+add/subtract instructions also ensures that the program output is not
+sensitive to the compiler's ability to combine multiply and add/subtract
+operations.
+.IP "\fB\-mtext\-section\-literals\fR" 4
+.IX Item "-mtext-section-literals"
+.PD 0
+.IP "\fB\-mno\-text\-section\-literals\fR" 4
+.IX Item "-mno-text-section-literals"
+.PD
+Control the treatment of literal pools.  The default is
+\&\fB\-mno\-text\-section\-literals\fR, which places literals in a separate
+section in the output file.  This allows the literal pool to be placed
+in a data \s-1RAM/ROM\s0, and it also allows the linker to combine literal
+pools from separate object files to remove redundant literals and
+improve code size.  With \fB\-mtext\-section\-literals\fR, the literals
+are interspersed in the text section in order to keep them as close as
+possible to their references.  This may be necessary for large assembly
+files.
+.IP "\fB\-mtarget\-align\fR" 4
+.IX Item "-mtarget-align"
+.PD 0
+.IP "\fB\-mno\-target\-align\fR" 4
+.IX Item "-mno-target-align"
+.PD
+When this option is enabled, \s-1GCC\s0 instructs the assembler to
+automatically align instructions to reduce branch penalties at the
+expense of some code density.  The assembler attempts to widen density
+instructions to align branch targets and the instructions following call
+instructions.  If there are not enough preceding safe density
+instructions to align a target, no widening will be performed.  The
+default is \fB\-mtarget\-align\fR.  These options do not affect the
+treatment of auto-aligned instructions like \f(CW\*(C`LOOP\*(C'\fR, which the
+assembler will always align, either by widening density instructions or
+by inserting no-op instructions.
+.IP "\fB\-mlongcalls\fR" 4
+.IX Item "-mlongcalls"
+.PD 0
+.IP "\fB\-mno\-longcalls\fR" 4
+.IX Item "-mno-longcalls"
+.PD
+When this option is enabled, \s-1GCC\s0 instructs the assembler to translate
+direct calls to indirect calls unless it can determine that the target
+of a direct call is in the range allowed by the call instruction.  This
+translation typically occurs for calls to functions in other source
+files.  Specifically, the assembler translates a direct \f(CW\*(C`CALL\*(C'\fR
+instruction into an \f(CW\*(C`L32R\*(C'\fR followed by a \f(CW\*(C`CALLX\*(C'\fR instruction.
+The default is \fB\-mno\-longcalls\fR.  This option should be used in
+programs where the call target can potentially be out of range.  This
+option is implemented in the assembler, not the compiler, so the
+assembly code generated by \s-1GCC\s0 will still show direct call
+instructions\-\-\-look at the disassembled object code to see the actual
+instructions.  Note that the assembler will use an indirect call for
+every cross-file call, not just those that really will be out of range.
+.Sh "Options for Code Generation Conventions"
+.IX Subsection "Options for Code Generation Conventions"
+These machine-independent options control the interface conventions
+used in code generation.
+.PP
+Most of them have both positive and negative forms; the negative form
+of \fB\-ffoo\fR would be \fB\-fno\-foo\fR.  In the table below, only
+one of the forms is listed\-\-\-the one which is not the default.  You
+can figure out the other form by either removing \fBno\-\fR or adding
+it.
+.IP "\fB\-fbounds\-check\fR" 4
+.IX Item "-fbounds-check"
+For front-ends that support it, generate additional code to check that
+indices used to access arrays are within the declared range.  This is
+currently only supported by the Java and Fortran 77 front\-ends, where
+this option defaults to true and false respectively.
+.IP "\fB\-ftrapv\fR" 4
+.IX Item "-ftrapv"
+This option generates traps for signed overflow on addition, subtraction,
+multiplication operations.
+.IP "\fB\-fwrapv\fR" 4
+.IX Item "-fwrapv"
+This option instructs the compiler to assume that signed arithmetic
+overflow of addition, subtraction and multiplication wraps around
+using twos-complement representation.  This flag enables some optimizations
+and disables other.  This option is enabled by default for the Java
+front\-end, as required by the Java language specification.
+.IP "\fB\-fexceptions\fR" 4
+.IX Item "-fexceptions"
+Enable exception handling.  Generates extra code needed to propagate
+exceptions.  For some targets, this implies \s-1GCC\s0 will generate frame
+unwind information for all functions, which can produce significant data
+size overhead, although it does not affect execution.  If you do not
+specify this option, \s-1GCC\s0 will enable it by default for languages like
+\&\*(C+ which normally require exception handling, and disable it for
+languages like C that do not normally require it.  However, you may need
+to enable this option when compiling C code that needs to interoperate
+properly with exception handlers written in \*(C+.  You may also wish to
+disable this option if you are compiling older \*(C+ programs that don't
+use exception handling.
+.IP "\fB\-fnon\-call\-exceptions\fR" 4
+.IX Item "-fnon-call-exceptions"
+Generate code that allows trapping instructions to throw exceptions.
+Note that this requires platform-specific runtime support that does
+not exist everywhere.  Moreover, it only allows \fItrapping\fR
+instructions to throw exceptions, i.e. memory references or floating
+point instructions.  It does not allow exceptions to be thrown from
+arbitrary signal handlers such as \f(CW\*(C`SIGALRM\*(C'\fR.
+.IP "\fB\-funwind\-tables\fR" 4
+.IX Item "-funwind-tables"
+Similar to \fB\-fexceptions\fR, except that it will just generate any needed
+static data, but will not affect the generated code in any other way.
+You will normally not enable this option; instead, a language processor
+that needs this handling would enable it on your behalf.
+.IP "\fB\-fasynchronous\-unwind\-tables\fR" 4
+.IX Item "-fasynchronous-unwind-tables"
+Generate unwind table in dwarf2 format, if supported by target machine.  The
+table is exact at each instruction boundary, so it can be used for stack
+unwinding from asynchronous events (such as debugger or garbage collector).
+.IP "\fB\-fpcc\-struct\-return\fR" 4
+.IX Item "-fpcc-struct-return"
+Return ``short'' \f(CW\*(C`struct\*(C'\fR and \f(CW\*(C`union\*(C'\fR values in memory like
+longer ones, rather than in registers.  This convention is less
+efficient, but it has the advantage of allowing intercallability between
+GCC-compiled files and files compiled with other compilers, particularly
+the Portable C Compiler (pcc).
+.Sp
+The precise convention for returning structures in memory depends
+on the target configuration macros.
+.Sp
+Short structures and unions are those whose size and alignment match
+that of some integer type.
+.Sp
+\&\fBWarning:\fR code compiled with the \fB\-fpcc\-struct\-return\fR
+switch is not binary compatible with code compiled with the
+\&\fB\-freg\-struct\-return\fR switch.
+Use it to conform to a non-default application binary interface.
+.IP "\fB\-freg\-struct\-return\fR" 4
+.IX Item "-freg-struct-return"
+Return \f(CW\*(C`struct\*(C'\fR and \f(CW\*(C`union\*(C'\fR values in registers when possible.
+This is more efficient for small structures than
+\&\fB\-fpcc\-struct\-return\fR.
+.Sp
+If you specify neither \fB\-fpcc\-struct\-return\fR nor
+\&\fB\-freg\-struct\-return\fR, \s-1GCC\s0 defaults to whichever convention is
+standard for the target.  If there is no standard convention, \s-1GCC\s0
+defaults to \fB\-fpcc\-struct\-return\fR, except on targets where \s-1GCC\s0 is
+the principal compiler.  In those cases, we can choose the standard, and
+we chose the more efficient register return alternative.
+.Sp
+\&\fBWarning:\fR code compiled with the \fB\-freg\-struct\-return\fR
+switch is not binary compatible with code compiled with the
+\&\fB\-fpcc\-struct\-return\fR switch.
+Use it to conform to a non-default application binary interface.
+.IP "\fB\-fshort\-enums\fR" 4
+.IX Item "-fshort-enums"
+Allocate to an \f(CW\*(C`enum\*(C'\fR type only as many bytes as it needs for the
+declared range of possible values.  Specifically, the \f(CW\*(C`enum\*(C'\fR type
+will be equivalent to the smallest integer type which has enough room.
+.Sp
+\&\fBWarning:\fR the \fB\-fshort\-enums\fR switch causes \s-1GCC\s0 to generate
+code that is not binary compatible with code generated without that switch.
+Use it to conform to a non-default application binary interface.
+.IP "\fB\-fshort\-double\fR" 4
+.IX Item "-fshort-double"
+Use the same size for \f(CW\*(C`double\*(C'\fR as for \f(CW\*(C`float\*(C'\fR.
+.Sp
+\&\fBWarning:\fR the \fB\-fshort\-double\fR switch causes \s-1GCC\s0 to generate
+code that is not binary compatible with code generated without that switch.
+Use it to conform to a non-default application binary interface.
+.IP "\fB\-fshort\-wchar\fR" 4
+.IX Item "-fshort-wchar"
+Override the underlying type for \fBwchar_t\fR to be \fBshort
+unsigned int\fR instead of the default for the target.  This option is
+useful for building programs to run under \s-1WINE\s0.
+.Sp
+\&\fBWarning:\fR the \fB\-fshort\-wchar\fR switch causes \s-1GCC\s0 to generate
+code that is not binary compatible with code generated without that switch.
+Use it to conform to a non-default application binary interface.
+.IP "\fB\-fshared\-data\fR" 4
+.IX Item "-fshared-data"
+Requests that the data and non\-\f(CW\*(C`const\*(C'\fR variables of this
+compilation be shared data rather than private data.  The distinction
+makes sense only on certain operating systems, where shared data is
+shared between processes running the same program, while private data
+exists in one copy per process.
+.IP "\fB\-fno\-common\fR" 4
+.IX Item "-fno-common"
+In C, allocate even uninitialized global variables in the data section of the
+object file, rather than generating them as common blocks.  This has the
+effect that if the same variable is declared (without \f(CW\*(C`extern\*(C'\fR) in
+two different compilations, you will get an error when you link them.
+The only reason this might be useful is if you wish to verify that the
+program will work on other systems which always work this way.
+.IP "\fB\-fno\-ident\fR" 4
+.IX Item "-fno-ident"
+Ignore the \fB#ident\fR directive.
+.IP "\fB\-finhibit\-size\-directive\fR" 4
+.IX Item "-finhibit-size-directive"
+Don't output a \f(CW\*(C`.size\*(C'\fR assembler directive, or anything else that
+would cause trouble if the function is split in the middle, and the
+two halves are placed at locations far apart in memory.  This option is
+used when compiling \fIcrtstuff.c\fR; you should not need to use it
+for anything else.
+.IP "\fB\-fverbose\-asm\fR" 4
+.IX Item "-fverbose-asm"
+Put extra commentary information in the generated assembly code to
+make it more readable.  This option is generally only of use to those
+who actually need to read the generated assembly code (perhaps while
+debugging the compiler itself).
+.Sp
+\&\fB\-fno\-verbose\-asm\fR, the default, causes the
+extra information to be omitted and is useful when comparing two assembler
+files.
+.IP "\fB\-fpic\fR" 4
+.IX Item "-fpic"
+Generate position-independent code (\s-1PIC\s0) suitable for use in a shared
+library, if supported for the target machine.  Such code accesses all
+constant addresses through a global offset table (\s-1GOT\s0).  The dynamic
+loader resolves the \s-1GOT\s0 entries when the program starts (the dynamic
+loader is not part of \s-1GCC\s0; it is part of the operating system).  If
+the \s-1GOT\s0 size for the linked executable exceeds a machine-specific
+maximum size, you get an error message from the linker indicating that
+\&\fB\-fpic\fR does not work; in that case, recompile with \fB\-fPIC\fR
+instead.  (These maximums are 8k on the \s-1SPARC\s0 and 32k
+on the m68k and \s-1RS/6000\s0.  The 386 has no such limit.)
+.Sp
+Position-independent code requires special support, and therefore works
+only on certain machines.  For the 386, \s-1GCC\s0 supports \s-1PIC\s0 for System V
+but not for the Sun 386i.  Code generated for the \s-1IBM\s0 \s-1RS/6000\s0 is always
+position\-independent.
+.IP "\fB\-fPIC\fR" 4
+.IX Item "-fPIC"
+If supported for the target machine, emit position-independent code,
+suitable for dynamic linking and avoiding any limit on the size of the
+global offset table.  This option makes a difference on the m68k
+and the \s-1SPARC\s0.
+.Sp
+Position-independent code requires special support, and therefore works
+only on certain machines.
+.IP "\fB\-fpie\fR" 4
+.IX Item "-fpie"
+.PD 0
+.IP "\fB\-fPIE\fR" 4
+.IX Item "-fPIE"
+.PD
+These options are similar to \fB\-fpic\fR and \fB\-fPIC\fR, but
+generated position independent code can be only linked into executables.
+Usually these options are used when \fB\-pie\fR \s-1GCC\s0 option will be
+used during linking.
+.IP "\fB\-ffixed\-\fR\fIreg\fR" 4
+.IX Item "-ffixed-reg"
+Treat the register named \fIreg\fR as a fixed register; generated code
+should never refer to it (except perhaps as a stack pointer, frame
+pointer or in some other fixed role).
+.Sp
+\&\fIreg\fR must be the name of a register.  The register names accepted
+are machine-specific and are defined in the \f(CW\*(C`REGISTER_NAMES\*(C'\fR
+macro in the machine description macro file.
+.Sp
+This flag does not have a negative form, because it specifies a
+three-way choice.
+.IP "\fB\-fcall\-used\-\fR\fIreg\fR" 4
+.IX Item "-fcall-used-reg"
+Treat the register named \fIreg\fR as an allocable register that is
+clobbered by function calls.  It may be allocated for temporaries or
+variables that do not live across a call.  Functions compiled this way
+will not save and restore the register \fIreg\fR.
+.Sp
+It is an error to used this flag with the frame pointer or stack pointer.
+Use of this flag for other registers that have fixed pervasive roles in
+the machine's execution model will produce disastrous results.
+.Sp
+This flag does not have a negative form, because it specifies a
+three-way choice.
+.IP "\fB\-fcall\-saved\-\fR\fIreg\fR" 4
+.IX Item "-fcall-saved-reg"
+Treat the register named \fIreg\fR as an allocable register saved by
+functions.  It may be allocated even for temporaries or variables that
+live across a call.  Functions compiled this way will save and restore
+the register \fIreg\fR if they use it.
+.Sp
+It is an error to used this flag with the frame pointer or stack pointer.
+Use of this flag for other registers that have fixed pervasive roles in
+the machine's execution model will produce disastrous results.
+.Sp
+A different sort of disaster will result from the use of this flag for
+a register in which function values may be returned.
+.Sp
+This flag does not have a negative form, because it specifies a
+three-way choice.
+.IP "\fB\-fpack\-struct\fR" 4
+.IX Item "-fpack-struct"
+Pack all structure members together without holes.
+.Sp
+\&\fBWarning:\fR the \fB\-fpack\-struct\fR switch causes \s-1GCC\s0 to generate
+code that is not binary compatible with code generated without that switch.
+Additionally, it makes the code suboptimal.
+Use it to conform to a non-default application binary interface.
+.IP "\fB\-finstrument\-functions\fR" 4
+.IX Item "-finstrument-functions"
+Generate instrumentation calls for entry and exit to functions.  Just
+after function entry and just before function exit, the following
+profiling functions will be called with the address of the current
+function and its call site.  (On some platforms,
+\&\f(CW\*(C`_\|_builtin_return_address\*(C'\fR does not work beyond the current
+function, so the call site information may not be available to the
+profiling functions otherwise.)
+.Sp
+.Vb 4
+\&        void __cyg_profile_func_enter (void *this_fn,
+\&                                       void *call_site);
+\&        void __cyg_profile_func_exit  (void *this_fn,
+\&                                       void *call_site);
+.Ve
+.Sp
+The first argument is the address of the start of the current function,
+which may be looked up exactly in the symbol table.
+.Sp
+This currently disables function inlining.  This restriction is
+expected to be removed in future releases.
+.Sp
+A function may be given the attribute \f(CW\*(C`no_instrument_function\*(C'\fR, in
+which case this instrumentation will not be done.  This can be used, for
+example, for the profiling functions listed above, high-priority
+interrupt routines, and any functions from which the profiling functions
+cannot safely be called (perhaps signal handlers, if the profiling
+routines generate output or allocate memory).
+.IP "\fB\-fstack\-check\fR" 4
+.IX Item "-fstack-check"
+Generate code to verify that you do not go beyond the boundary of the
+stack.  You should specify this flag if you are running in an
+environment with multiple threads, but only rarely need to specify it in
+a single-threaded environment since stack overflow is automatically
+detected on nearly all systems if there is only one stack.
+.Sp
+Note that this switch does not actually cause checking to be done; the
+operating system must do that.  The switch causes generation of code
+to ensure that the operating system sees the stack being extended.
+.IP "\fB\-fstack\-limit\-register=\fR\fIreg\fR" 4
+.IX Item "-fstack-limit-register=reg"
+.PD 0
+.IP "\fB\-fstack\-limit\-symbol=\fR\fIsym\fR" 4
+.IX Item "-fstack-limit-symbol=sym"
+.IP "\fB\-fno\-stack\-limit\fR" 4
+.IX Item "-fno-stack-limit"
+.PD
+Generate code to ensure that the stack does not grow beyond a certain value,
+either the value of a register or the address of a symbol.  If the stack
+would grow beyond the value, a signal is raised.  For most targets,
+the signal is raised before the stack overruns the boundary, so
+it is possible to catch the signal without taking special precautions.
+.Sp
+For instance, if the stack starts at absolute address \fB0x80000000\fR
+and grows downwards, you can use the flags
+\&\fB\-fstack\-limit\-symbol=_\|_stack_limit\fR and
+\&\fB\-Wl,\-\-defsym,_\|_stack_limit=0x7ffe0000\fR to enforce a stack limit
+of 128KB.  Note that this may only work with the \s-1GNU\s0 linker.
+.IP "\fB\-fargument\-alias\fR" 4
+.IX Item "-fargument-alias"
+.PD 0
+.IP "\fB\-fargument\-noalias\fR" 4
+.IX Item "-fargument-noalias"
+.IP "\fB\-fargument\-noalias\-global\fR" 4
+.IX Item "-fargument-noalias-global"
+.PD
+Specify the possible relationships among parameters and between
+parameters and global data.
+.Sp
+\&\fB\-fargument\-alias\fR specifies that arguments (parameters) may
+alias each other and may alias global storage.\fB\-fargument\-noalias\fR specifies that arguments do not alias
+each other, but may alias global storage.\fB\-fargument\-noalias\-global\fR specifies that arguments do not
+alias each other and do not alias global storage.
+.Sp
+Each language will automatically use whatever option is required by
+the language standard.  You should not need to use these options yourself.
+.IP "\fB\-fleading\-underscore\fR" 4
+.IX Item "-fleading-underscore"
+This option and its counterpart, \fB\-fno\-leading\-underscore\fR, forcibly
+change the way C symbols are represented in the object file.  One use
+is to help link with legacy assembly code.
+.Sp
+\&\fBWarning:\fR the \fB\-fleading\-underscore\fR switch causes \s-1GCC\s0 to
+generate code that is not binary compatible with code generated without that
+switch.  Use it to conform to a non-default application binary interface.
+Not all targets provide complete support for this switch.
+.IP "\fB\-ftls\-model=\fR\fImodel\fR" 4
+.IX Item "-ftls-model=model"
+Alter the thread-local storage model to be used.
+The \fImodel\fR argument should be one of \f(CW\*(C`global\-dynamic\*(C'\fR,
+\&\f(CW\*(C`local\-dynamic\*(C'\fR, \f(CW\*(C`initial\-exec\*(C'\fR or \f(CW\*(C`local\-exec\*(C'\fR.
+.Sp
+The default without \fB\-fpic\fR is \f(CW\*(C`initial\-exec\*(C'\fR; with
+\&\fB\-fpic\fR the default is \f(CW\*(C`global\-dynamic\*(C'\fR.
+.SH "ENVIRONMENT"
+.IX Header "ENVIRONMENT"
+This section describes several environment variables that affect how \s-1GCC\s0
+operates.  Some of them work by specifying directories or prefixes to use
+when searching for various kinds of files.  Some are used to specify other
+aspects of the compilation environment.
+.PP
+Note that you can also specify places to search using options such as
+\&\fB\-B\fR, \fB\-I\fR and \fB\-L\fR.  These
+take precedence over places specified using environment variables, which
+in turn take precedence over those specified by the configuration of \s-1GCC\s0.
+.IP "\fB\s-1LANG\s0\fR" 4
+.IX Item "LANG"
+.PD 0
+.IP "\fB\s-1LC_CTYPE\s0\fR" 4
+.IX Item "LC_CTYPE"
+.IP "\fB\s-1LC_MESSAGES\s0\fR" 4
+.IX Item "LC_MESSAGES"
+.IP "\fB\s-1LC_ALL\s0\fR" 4
+.IX Item "LC_ALL"
+.PD
+These environment variables control the way that \s-1GCC\s0 uses
+localization information that allow \s-1GCC\s0 to work with different
+national conventions.  \s-1GCC\s0 inspects the locale categories
+\&\fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR if it has been configured to do
+so.  These locale categories can be set to any value supported by your
+installation.  A typical value is \fBen_GB.UTF\-8\fR for English in the United
+Kingdom encoded in \s-1UTF\-8\s0.
+.Sp
+The \fB\s-1LC_CTYPE\s0\fR environment variable specifies character
+classification.  \s-1GCC\s0 uses it to determine the character boundaries in
+a string; this is needed for some multibyte encodings that contain quote
+and escape characters that would otherwise be interpreted as a string
+end or escape.
+.Sp
+The \fB\s-1LC_MESSAGES\s0\fR environment variable specifies the language to
+use in diagnostic messages.
+.Sp
+If the \fB\s-1LC_ALL\s0\fR environment variable is set, it overrides the value
+of \fB\s-1LC_CTYPE\s0\fR and \fB\s-1LC_MESSAGES\s0\fR; otherwise, \fB\s-1LC_CTYPE\s0\fR
+and \fB\s-1LC_MESSAGES\s0\fR default to the value of the \fB\s-1LANG\s0\fR
+environment variable.  If none of these variables are set, \s-1GCC\s0
+defaults to traditional C English behavior.
+.IP "\fB\s-1TMPDIR\s0\fR" 4
+.IX Item "TMPDIR"
+If \fB\s-1TMPDIR\s0\fR is set, it specifies the directory to use for temporary
+files.  \s-1GCC\s0 uses temporary files to hold the output of one stage of
+compilation which is to be used as input to the next stage: for example,
+the output of the preprocessor, which is the input to the compiler
+proper.
+.IP "\fB\s-1GCC_EXEC_PREFIX\s0\fR" 4
+.IX Item "GCC_EXEC_PREFIX"
+If \fB\s-1GCC_EXEC_PREFIX\s0\fR is set, it specifies a prefix to use in the
+names of the subprograms executed by the compiler.  No slash is added
+when this prefix is combined with the name of a subprogram, but you can
+specify a prefix that ends with a slash if you wish.
+.Sp
+If \fB\s-1GCC_EXEC_PREFIX\s0\fR is not set, \s-1GCC\s0 will attempt to figure out
+an appropriate prefix to use based on the pathname it was invoked with.
+.Sp
+If \s-1GCC\s0 cannot find the subprogram using the specified prefix, it
+tries looking in the usual places for the subprogram.
+.Sp
+The default value of \fB\s-1GCC_EXEC_PREFIX\s0\fR is
+\&\fI\fIprefix\fI/lib/gcc/\fR where \fIprefix\fR is the value
+of \f(CW\*(C`prefix\*(C'\fR when you ran the \fIconfigure\fR script.
+.Sp
+Other prefixes specified with \fB\-B\fR take precedence over this prefix.
+.Sp
+This prefix is also used for finding files such as \fIcrt0.o\fR that are
+used for linking.
+.Sp
+In addition, the prefix is used in an unusual way in finding the
+directories to search for header files.  For each of the standard
+directories whose name normally begins with \fB/usr/local/lib/gcc\fR
+(more precisely, with the value of \fB\s-1GCC_INCLUDE_DIR\s0\fR), \s-1GCC\s0 tries
+replacing that beginning with the specified prefix to produce an
+alternate directory name.  Thus, with \fB\-Bfoo/\fR, \s-1GCC\s0 will search
+\&\fIfoo/bar\fR where it would normally search \fI/usr/local/lib/bar\fR.
+These alternate directories are searched first; the standard directories
+come next.
+.IP "\fB\s-1COMPILER_PATH\s0\fR" 4
+.IX Item "COMPILER_PATH"
+The value of \fB\s-1COMPILER_PATH\s0\fR is a colon-separated list of
+directories, much like \fB\s-1PATH\s0\fR.  \s-1GCC\s0 tries the directories thus
+specified when searching for subprograms, if it can't find the
+subprograms using \fB\s-1GCC_EXEC_PREFIX\s0\fR.
+.IP "\fB\s-1LIBRARY_PATH\s0\fR" 4
+.IX Item "LIBRARY_PATH"
+The value of \fB\s-1LIBRARY_PATH\s0\fR is a colon-separated list of
+directories, much like \fB\s-1PATH\s0\fR.  When configured as a native compiler,
+\&\s-1GCC\s0 tries the directories thus specified when searching for special
+linker files, if it can't find them using \fB\s-1GCC_EXEC_PREFIX\s0\fR.  Linking
+using \s-1GCC\s0 also uses these directories when searching for ordinary
+libraries for the \fB\-l\fR option (but directories specified with
+\&\fB\-L\fR come first).
+.IP "\fB\s-1LANG\s0\fR" 4
+.IX Item "LANG"
+This variable is used to pass locale information to the compiler.  One way in
+which this information is used is to determine the character set to be used
+when character literals, string literals and comments are parsed in C and \*(C+.
+When the compiler is configured to allow multibyte characters,
+the following values for \fB\s-1LANG\s0\fR are recognized:
+.RS 4
+.IP "\fBC\-JIS\fR" 4
+.IX Item "C-JIS"
+Recognize \s-1JIS\s0 characters.
+.IP "\fBC\-SJIS\fR" 4
+.IX Item "C-SJIS"
+Recognize \s-1SJIS\s0 characters.
+.IP "\fBC\-EUCJP\fR" 4
+.IX Item "C-EUCJP"
+Recognize \s-1EUCJP\s0 characters.
+.RE
+.RS 4
+.Sp
+If \fB\s-1LANG\s0\fR is not defined, or if it has some other value, then the
+compiler will use mblen and mbtowc as defined by the default locale to
+recognize and translate multibyte characters.
+.RE
+.PP
+Some additional environments variables affect the behavior of the
+preprocessor.
+.IP "\fB\s-1CPATH\s0\fR" 4
+.IX Item "CPATH"
+.PD 0
+.IP "\fBC_INCLUDE_PATH\fR" 4
+.IX Item "C_INCLUDE_PATH"
+.IP "\fB\s-1CPLUS_INCLUDE_PATH\s0\fR" 4
+.IX Item "CPLUS_INCLUDE_PATH"
+.IP "\fB\s-1OBJC_INCLUDE_PATH\s0\fR" 4
+.IX Item "OBJC_INCLUDE_PATH"
+.PD
+Each variable's value is a list of directories separated by a special
+character, much like \fB\s-1PATH\s0\fR, in which to look for header files.
+The special character, \f(CW\*(C`PATH_SEPARATOR\*(C'\fR, is target-dependent and
+determined at \s-1GCC\s0 build time.  For Microsoft Windows-based targets it is a
+semicolon, and for almost all other targets it is a colon.
+.Sp
+\&\fB\s-1CPATH\s0\fR specifies a list of directories to be searched as if
+specified with \fB\-I\fR, but after any paths given with \fB\-I\fR
+options on the command line.  This environment variable is used
+regardless of which language is being preprocessed.
+.Sp
+The remaining environment variables apply only when preprocessing the
+particular language indicated.  Each specifies a list of directories
+to be searched as if specified with \fB\-isystem\fR, but after any
+paths given with \fB\-isystem\fR options on the command line.
+.Sp
+In all these variables, an empty element instructs the compiler to
+search its current working directory.  Empty elements can appear at the
+beginning or end of a path.  For instance, if the value of
+\&\fB\s-1CPATH\s0\fR is \f(CW\*(C`:/special/include\*(C'\fR, that has the same
+effect as \fB\-I.\ \-I/special/include\fR.
+.IP "\fB\s-1DEPENDENCIES_OUTPUT\s0\fR" 4
+.IX Item "DEPENDENCIES_OUTPUT"
+If this variable is set, its value specifies how to output
+dependencies for Make based on the non-system header files processed
+by the compiler.  System header files are ignored in the dependency
+output.
+.Sp
+The value of \fB\s-1DEPENDENCIES_OUTPUT\s0\fR can be just a file name, in
+which case the Make rules are written to that file, guessing the target
+name from the source file name.  Or the value can have the form
+\&\fIfile\fR\fB \fR\fItarget\fR, in which case the rules are written to
+file \fIfile\fR using \fItarget\fR as the target name.
+.Sp
+In other words, this environment variable is equivalent to combining
+the options \fB\-MM\fR and \fB\-MF\fR,
+with an optional \fB\-MT\fR switch too.
+.IP "\fB\s-1SUNPRO_DEPENDENCIES\s0\fR" 4
+.IX Item "SUNPRO_DEPENDENCIES"
+This variable is the same as \fB\s-1DEPENDENCIES_OUTPUT\s0\fR (see above),
+except that system header files are not ignored, so it implies
+\&\fB\-M\fR rather than \fB\-MM\fR.  However, the dependence on the
+main input file is omitted.
+.SH "BUGS"
+.IX Header "BUGS"
+For instructions on reporting bugs, see
+<\fBhttp://gcc.gnu.org/bugs.html\fR>.  Use of the \fBgccbug\fR
+script to report bugs is recommended.
+.SH "FOOTNOTES"
+.IX Header "FOOTNOTES"
+.IP "1." 4
+On some systems, \fBgcc \-shared\fR
+needs to build supplementary stub code for constructors to work.  On
+multi-libbed systems, \fBgcc \-shared\fR must select the correct support
+libraries to link against.  Failing to supply the correct flags may lead
+to subtle defects.  Supplying them in cases where they are not necessary
+is innocuous.
+.SH "SEE ALSO"
+.IX Header "SEE ALSO"
+\&\fIgpl\fR\|(7), \fIgfdl\fR\|(7), \fIfsf\-funding\fR\|(7),
+\&\fIcpp\fR\|(1), \fIgcov\fR\|(1), \fIg77\fR\|(1), \fIas\fR\|(1), \fIld\fR\|(1), \fIgdb\fR\|(1), \fIadb\fR\|(1), \fIdbx\fR\|(1), \fIsdb\fR\|(1)
+and the Info entries for \fIgcc\fR, \fIcpp\fR, \fIg77\fR, \fIas\fR,
+\&\fIld\fR, \fIbinutils\fR and \fIgdb\fR.
+.SH "AUTHOR"
+.IX Header "AUTHOR"
+See the Info entry for \fBgcc\fR, or
+<\fBhttp://gcc.gnu.org/onlinedocs/gcc/Contributors.html\fR>,
+for contributors to \s-1GCC\s0.
+.SH "COPYRIGHT"
+.IX Header "COPYRIGHT"
+Copyright (c) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
+1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
+.PP
+Permission is granted to copy, distribute and/or modify this document
+under the terms of the \s-1GNU\s0 Free Documentation License, Version 1.2 or
+any later version published by the Free Software Foundation; with the
+Invariant Sections being ``\s-1GNU\s0 General Public License'' and ``Funding
+Free Software'', the Front-Cover texts being (a) (see below), and with
+the Back-Cover Texts being (b) (see below).  A copy of the license is
+included in the \fIgfdl\fR\|(7) man page.
+.PP
+(a) The \s-1FSF\s0's Front-Cover Text is:
+.PP
+.Vb 1
+\&     A GNU Manual
+.Ve
+.PP
+(b) The \s-1FSF\s0's Back-Cover Text is:
+.PP
+.Vb 3
+\&     You have freedom to copy and modify this GNU Manual, like GNU
+\&     software.  Copies published by the Free Software Foundation raise
+\&     funds for GNU development.
+.Ve