usr/src/uts/i86pc/os/startup.c
changeset 0 68f95e015346
child 423 6cbc492798ce
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/i86pc/os/startup.c	Tue Jun 14 00:00:00 2005 -0700
@@ -0,0 +1,2884 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License").  You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#include <sys/types.h>
+#include <sys/t_lock.h>
+#include <sys/param.h>
+#include <sys/sysmacros.h>
+#include <sys/signal.h>
+#include <sys/systm.h>
+#include <sys/user.h>
+#include <sys/mman.h>
+#include <sys/vm.h>
+#include <sys/conf.h>
+#include <sys/avintr.h>
+#include <sys/autoconf.h>
+#include <sys/disp.h>
+#include <sys/class.h>
+#include <sys/bitmap.h>
+
+#include <sys/privregs.h>
+
+#include <sys/proc.h>
+#include <sys/buf.h>
+#include <sys/kmem.h>
+#include <sys/kstat.h>
+
+#include <sys/reboot.h>
+#include <sys/uadmin.h>
+
+#include <sys/cred.h>
+#include <sys/vnode.h>
+#include <sys/file.h>
+
+#include <sys/procfs.h>
+#include <sys/acct.h>
+
+#include <sys/vfs.h>
+#include <sys/dnlc.h>
+#include <sys/var.h>
+#include <sys/cmn_err.h>
+#include <sys/utsname.h>
+#include <sys/debug.h>
+#include <sys/kdi.h>
+
+#include <sys/dumphdr.h>
+#include <sys/bootconf.h>
+#include <sys/varargs.h>
+#include <sys/promif.h>
+#include <sys/prom_emul.h>	/* for create_prom_prop */
+#include <sys/modctl.h>		/* for "procfs" hack */
+
+#include <sys/consdev.h>
+#include <sys/frame.h>
+
+#include <sys/sunddi.h>
+#include <sys/sunndi.h>
+#include <sys/ndi_impldefs.h>
+#include <sys/ddidmareq.h>
+#include <sys/psw.h>
+#include <sys/regset.h>
+#include <sys/clock.h>
+#include <sys/pte.h>
+#include <sys/mmu.h>
+#include <sys/tss.h>
+#include <sys/stack.h>
+#include <sys/trap.h>
+#include <sys/pic.h>
+#include <sys/fp.h>
+#include <vm/anon.h>
+#include <vm/as.h>
+#include <vm/page.h>
+#include <vm/seg.h>
+#include <vm/seg_dev.h>
+#include <vm/seg_kmem.h>
+#include <vm/seg_kpm.h>
+#include <vm/seg_map.h>
+#include <vm/seg_vn.h>
+#include <vm/seg_kp.h>
+#include <sys/memnode.h>
+#include <vm/vm_dep.h>
+#include <sys/swap.h>
+#include <sys/thread.h>
+#include <sys/sysconf.h>
+#include <sys/vm_machparam.h>
+#include <sys/archsystm.h>
+#include <sys/machsystm.h>
+#include <vm/hat.h>
+#include <vm/hat_i86.h>
+#include <sys/pmem.h>
+#include <sys/instance.h>
+#include <sys/smp_impldefs.h>
+#include <sys/x86_archext.h>
+#include <sys/segments.h>
+#include <sys/clconf.h>
+#include <sys/kobj.h>
+#include <sys/kobj_lex.h>
+#include <sys/prom_emul.h>
+#include <sys/cpc_impl.h>
+#include <sys/chip.h>
+#include <sys/x86_archext.h>
+
+extern void debug_enter(char *);
+extern void progressbar_init(void);
+extern void progressbar_start(void);
+
+/*
+ * XXX make declaration below "static" when drivers no longer use this
+ * interface.
+ */
+extern caddr_t p0_va;	/* Virtual address for accessing physical page 0 */
+
+/*
+ * segkp
+ */
+extern int segkp_fromheap;
+
+static void kvm_init(void);
+static void startup_init(void);
+static void startup_memlist(void);
+static void startup_modules(void);
+static void startup_bop_gone(void);
+static void startup_vm(void);
+static void startup_end(void);
+
+/*
+ * Declare these as initialized data so we can patch them.
+ */
+pgcnt_t physmem = 0;	/* memory size in pages, patch if you want less */
+pgcnt_t obp_pages;	/* Memory used by PROM for its text and data */
+
+char *kobj_file_buf;
+int kobj_file_bufsize;	/* set in /etc/system */
+
+/* Global variables for MP support. Used in mp_startup */
+caddr_t	rm_platter_va;
+uint32_t rm_platter_pa;
+
+/*
+ * Some CPUs have holes in the middle of the 64-bit virtual address range.
+ */
+uintptr_t hole_start, hole_end;
+
+/*
+ * kpm mapping window
+ */
+caddr_t kpm_vbase;
+size_t  kpm_size;
+static int kpm_desired = 0;		/* Do we want to try to use segkpm? */
+
+/*
+ * VA range that must be preserved for boot until we release all of its
+ * mappings.
+ */
+#if defined(__amd64)
+static void *kmem_setaside;
+#endif
+
+/*
+ * Configuration parameters set at boot time.
+ */
+
+caddr_t econtig;		/* end of first block of contiguous kernel */
+
+struct bootops		*bootops = 0;	/* passed in from boot */
+struct bootops		**bootopsp;
+struct boot_syscalls	*sysp;		/* passed in from boot */
+
+char bootblock_fstype[16];
+
+char kern_bootargs[OBP_MAXPATHLEN];
+
+/*
+ * new memory fragmentations are possible in startup() due to BOP_ALLOCs. this
+ * depends on number of BOP_ALLOC calls made and requested size, memory size
+ * combination and whether boot.bin memory needs to be freed.
+ */
+#define	POSS_NEW_FRAGMENTS	12
+
+/*
+ * VM data structures
+ */
+long page_hashsz;		/* Size of page hash table (power of two) */
+struct page *pp_base;		/* Base of initial system page struct array */
+struct page **page_hash;	/* Page hash table */
+struct seg ktextseg;		/* Segment used for kernel executable image */
+struct seg kvalloc;		/* Segment used for "valloc" mapping */
+struct seg kpseg;		/* Segment used for pageable kernel virt mem */
+struct seg kmapseg;		/* Segment used for generic kernel mappings */
+struct seg kdebugseg;		/* Segment used for the kernel debugger */
+
+struct seg *segkmap = &kmapseg;	/* Kernel generic mapping segment */
+struct seg *segkp = &kpseg;	/* Pageable kernel virtual memory segment */
+
+#if defined(__amd64)
+struct seg kvseg_core;		/* Segment used for the core heap */
+struct seg kpmseg;		/* Segment used for physical mapping */
+struct seg *segkpm = &kpmseg;	/* 64bit kernel physical mapping segment */
+#else
+struct seg *segkpm = NULL;	/* Unused on IA32 */
+#endif
+
+caddr_t segkp_base;		/* Base address of segkp */
+#if defined(__amd64)
+pgcnt_t segkpsize = btop(SEGKPDEFSIZE);	/* size of segkp segment in pages */
+#else
+pgcnt_t segkpsize = 0;
+#endif
+
+struct memseg *memseg_base;
+struct vnode unused_pages_vp;
+
+#define	FOURGB	0x100000000LL
+
+struct memlist *memlist;
+
+caddr_t s_text;		/* start of kernel text segment */
+caddr_t e_text;		/* end of kernel text segment */
+caddr_t s_data;		/* start of kernel data segment */
+caddr_t e_data;		/* end of kernel data segment */
+caddr_t modtext;	/* start of loadable module text reserved */
+caddr_t e_modtext;	/* end of loadable module text reserved */
+caddr_t moddata;	/* start of loadable module data reserved */
+caddr_t e_moddata;	/* end of loadable module data reserved */
+
+struct memlist *phys_install;	/* Total installed physical memory */
+struct memlist *phys_avail;	/* Total available physical memory */
+
+static void memlist_add(uint64_t, uint64_t, struct memlist *,
+	struct memlist **);
+
+/*
+ * kphysm_init returns the number of pages that were processed
+ */
+static pgcnt_t kphysm_init(page_t *, struct memseg *, pgcnt_t, pgcnt_t);
+
+#define	IO_PROP_SIZE	64	/* device property size */
+
+/*
+ * a couple useful roundup macros
+ */
+#define	ROUND_UP_PAGE(x)	\
+	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)MMU_PAGESIZE))
+#define	ROUND_UP_LPAGE(x)	\
+	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[1]))
+#define	ROUND_UP_4MEG(x)	\
+	((uintptr_t)P2ROUNDUP((uintptr_t)(x), (uintptr_t)FOURMB_PAGESIZE))
+#define	ROUND_UP_TOPLEVEL(x)	\
+	((uintptr_t)P2ROUNDUP((uintptr_t)(x), mmu.level_size[mmu.max_level]))
+
+/*
+ *	32-bit Kernel's Virtual memory layout.
+ *		+-----------------------+
+ *		|	psm 1-1 map	|
+ *		|	exec args area	|
+ * 0xFFC00000  -|-----------------------|- ARGSBASE
+ *		|	debugger	|
+ * 0xFF800000  -|-----------------------|- SEGDEBUGBASE
+ *		|      Kernel Data	|
+ * 0xFEC00000  -|-----------------------|
+ *              |      Kernel Text	|
+ * 0xFE800000  -|-----------------------|- KERNEL_TEXT
+ * 		|     LUFS sinkhole	|
+ * 0xFE000000  -|-----------------------|- lufs_addr
+ * ---         -|-----------------------|- valloc_base + valloc_sz
+ * 		|   early pp structures	|
+ * 		|   memsegs, memlists, 	|
+ * 		|   page hash, etc.	|
+ * ---	       -|-----------------------|- valloc_base (floating)
+ * 		|     ptable_va    	|
+ * 0xFDFFE000  -|-----------------------|- ekernelheap, ptable_va
+ *		|			|  (segkp is an arena under the heap)
+ *		|			|
+ *		|	kvseg		|
+ *		|			|
+ *		|			|
+ * ---         -|-----------------------|- kernelheap (floating)
+ * 		|        Segkmap	|
+ * 0xC3002000  -|-----------------------|- segkmap_start (floating)
+ *		|	Red Zone	|
+ * 0xC3000000  -|-----------------------|- kernelbase / userlimit (floating)
+ *		|			|			||
+ *		|     Shared objects	|			\/
+ *		|			|
+ *		:			:
+ *		|	user data	|
+ *		|-----------------------|
+ *		|	user text	|
+ * 0x08048000  -|-----------------------|
+ *		|	user stack	|
+ *		:			:
+ *		|	invalid		|
+ * 0x00000000	+-----------------------+
+ *
+ *
+ *		64-bit Kernel's Virtual memory layout. (assuming 64 bit app)
+ *			+-----------------------+
+ *			|	psm 1-1 map	|
+ *			|	exec args area	|
+ * 0xFFFFFFFF.FFC00000  |-----------------------|- ARGSBASE
+ *			|	debugger (?)	|
+ * 0xFFFFFFFF.FF800000  |-----------------------|- SEGDEBUGBASE
+ *			|      unused    	|
+ *			+-----------------------+
+ *			|      Kernel Data	|
+ * 0xFFFFFFFF.FBC00000  |-----------------------|
+ *			|      Kernel Text	|
+ * 0xFFFFFFFF.FB800000  |-----------------------|- KERNEL_TEXT
+ * 			|     LUFS sinkhole	|
+ * 0xFFFFFFFF.FB000000 -|-----------------------|- lufs_addr
+ * ---                  |-----------------------|- valloc_base + valloc_sz
+ * 			|   early pp structures	|
+ * 			|   memsegs, memlists, 	|
+ * 			|   page hash, etc.	|
+ * ---                  |-----------------------|- valloc_base
+ * 			|     ptable_va    	|
+ * ---                  |-----------------------|- ptable_va
+ * 			|      Core heap	| (used for loadable modules)
+ * 0xFFFFFFFF.C0000000  |-----------------------|- core_base / ekernelheap
+ *			|	 Kernel		|
+ *			|	  heap		|
+ * 0xFFFFFXXX.XXX00000  |-----------------------|- kernelheap (floating)
+ *			|	 segkmap	|
+ * 0xFFFFFXXX.XXX00000  |-----------------------|- segkmap_start (floating)
+ *			|    device mappings	|
+ * 0xFFFFFXXX.XXX00000  |-----------------------|- toxic_addr (floating)
+ *			|	  segkp		|
+ * ---                  |-----------------------|- segkp_base
+ *			|	 segkpm		|
+ * 0xFFFFFE00.00000000  |-----------------------|
+ *			|	Red Zone	|
+ * 0xFFFFFD80.00000000  |-----------------------|- KERNELBASE
+ *			|     User stack	|- User space memory
+ * 			|			|
+ * 			| shared objects, etc	|	(grows downwards)
+ *			:			:
+ * 			|			|
+ * 0xFFFF8000.00000000  |-----------------------|
+ * 			|			|
+ * 			| VA Hole / unused	|
+ * 			|			|
+ * 0x00008000.00000000  |-----------------------|
+ *			|			|
+ *			|			|
+ *			:			:
+ *			|	user heap	|	(grows upwards)
+ *			|			|
+ *			|	user data	|
+ *			|-----------------------|
+ *			|	user text	|
+ * 0x00000000.04000000  |-----------------------|
+ *			|	invalid		|
+ * 0x00000000.00000000	+-----------------------+
+ *
+ * A 32 bit app on the 64 bit kernel sees the same layout as on the 32 bit
+ * kernel, except that userlimit is raised to 0xfe000000
+ *
+ * Floating values:
+ *
+ * valloc_base: start of the kernel's memory management/tracking data
+ * structures.  This region contains page_t structures for the lowest 4GB
+ * of physical memory, memsegs, memlists, and the page hash.
+ *
+ * core_base: start of the kernel's "core" heap area on 64-bit systems.
+ * This area is intended to be used for global data as well as for module
+ * text/data that does not fit into the nucleus pages.  The core heap is
+ * restricted to a 2GB range, allowing every address within it to be
+ * accessed using rip-relative addressing
+ *
+ * ekernelheap: end of kernelheap and start of segmap.
+ *
+ * kernelheap: start of kernel heap.  On 32-bit systems, this starts right
+ * above a red zone that separates the user's address space from the
+ * kernel's.  On 64-bit systems, it sits above segkp and segkpm.
+ *
+ * segkmap_start: start of segmap. The length of segmap can be modified
+ * by changing segmapsize in /etc/system (preferred) or eeprom (deprecated).
+ * The default length is 16MB on 32-bit systems and 64MB on 64-bit systems.
+ *
+ * kernelbase: On a 32-bit kernel the default value of 0xd4000000 will be
+ * decreased by 2X the size required for page_t.  This allows the kernel
+ * heap to grow in size with physical memory.  With sizeof(page_t) == 80
+ * bytes, the following shows the values of kernelbase and kernel heap
+ * sizes for different memory configurations (assuming default segmap and
+ * segkp sizes).
+ *
+ *	mem	size for	kernelbase	kernel heap
+ *	size	page_t's			size
+ *	----	---------	----------	-----------
+ *	1gb	0x01400000	0xd1800000	684MB
+ *	2gb	0x02800000	0xcf000000	704MB
+ *	4gb	0x05000000	0xca000000	744MB
+ *	6gb	0x07800000	0xc5000000	784MB
+ *	8gb	0x0a000000	0xc0000000	824MB
+ *	16gb	0x14000000	0xac000000	984MB
+ *	32gb	0x28000000	0x84000000	1304MB
+ *	64gb	0x50000000	0x34000000	1944MB (*)
+ *
+ * kernelbase is less than the abi minimum of 0xc0000000 for memory
+ * configurations above 8gb.
+ *
+ * (*) support for memory configurations above 32gb will require manual tuning
+ * of kernelbase to balance out the need of user applications.
+ */
+
+void init_intr_threads(struct cpu *);
+
+/*
+ * Dummy spl priority masks
+ */
+static unsigned char	dummy_cpu_pri[MAXIPL + 1] = {
+	0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf,
+	0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf, 0xf
+};
+
+/* real-time-clock initialization parameters */
+long gmt_lag;		/* offset in seconds of gmt to local time */
+extern long process_rtc_config_file(void);
+
+char		*final_kernelheap;
+char		*boot_kernelheap;
+uintptr_t	kernelbase;
+uintptr_t	eprom_kernelbase;
+size_t		segmapsize;
+static uintptr_t segmap_reserved;
+uintptr_t	segkmap_start;
+int		segmapfreelists;
+pgcnt_t		boot_npages;
+pgcnt_t		npages;
+size_t		core_size;		/* size of "core" heap */
+uintptr_t	core_base;		/* base address of "core" heap */
+
+/*
+ * List of bootstrap pages. We mark these as allocated in startup.
+ * release_bootstrap() will free them when we're completely done with
+ * the bootstrap.
+ */
+static page_t *bootpages, *rd_pages;
+
+struct system_hardware system_hardware;
+
+/*
+ * Enable some debugging messages concerning memory usage...
+ *
+ * XX64 There should only be one print routine once memlist usage between
+ * vmx and the kernel is cleaned up and there is a single memlist structure
+ * shared between kernel and boot.
+ */
+static void
+print_boot_memlist(char *title, struct memlist *mp)
+{
+	prom_printf("MEMLIST: %s:\n", title);
+	while (mp != NULL)  {
+		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
+		    mp->address, mp->size);
+		mp = mp->next;
+	}
+}
+
+static void
+print_kernel_memlist(char *title, struct memlist *mp)
+{
+	prom_printf("MEMLIST: %s:\n", title);
+	while (mp != NULL)  {
+		prom_printf("\tAddress 0x%" PRIx64 ", size 0x%" PRIx64 "\n",
+		    mp->address, mp->size);
+		mp = mp->next;
+	}
+}
+
+/*
+ * XX64 need a comment here.. are these just default values, surely
+ * we read the "cpuid" type information to figure this out.
+ */
+int	l2cache_sz = 0x80000;
+int	l2cache_linesz = 0x40;
+int	l2cache_assoc = 1;
+
+/*
+ * on 64 bit we use a predifined VA range for mapping devices in the kernel
+ * on 32 bit the mappings are intermixed in the heap, so we use a bit map
+ */
+#ifdef __amd64
+
+vmem_t		*device_arena;
+uintptr_t	toxic_addr = (uintptr_t)NULL;
+size_t		toxic_size = 1 * 1024 * 1024 * 1024; /* Sparc uses 1 gig too */
+
+#else	/* __i386 */
+
+ulong_t		*toxic_bit_map;	/* one bit for each 4k of VA in heap_arena */
+size_t		toxic_bit_map_len = 0;	/* in bits */
+
+#endif	/* __i386 */
+
+/*
+ * Simple boot time debug facilities
+ */
+static char *prm_dbg_str[] = {
+	"%s:%d: '%s' is 0x%x\n",
+	"%s:%d: '%s' is 0x%llx\n"
+};
+
+int prom_debug;
+
+#define	PRM_DEBUG(q)	if (prom_debug) 	\
+	prom_printf(prm_dbg_str[sizeof (q) >> 3], "startup.c", __LINE__, #q, q);
+#define	PRM_POINT(q)	if (prom_debug) 	\
+	prom_printf("%s:%d: %s\n", "startup.c", __LINE__, q);
+
+/*
+ * This structure is used to keep track of the intial allocations
+ * done in startup_memlist(). The value of NUM_ALLOCATIONS needs to
+ * be >= the number of ADD_TO_ALLOCATIONS() executed in the code.
+ */
+#define	NUM_ALLOCATIONS 7
+int num_allocations = 0;
+struct {
+	void **al_ptr;
+	size_t al_size;
+} allocations[NUM_ALLOCATIONS];
+size_t valloc_sz = 0;
+uintptr_t valloc_base;
+extern uintptr_t ptable_va;
+extern size_t ptable_sz;
+
+#define	ADD_TO_ALLOCATIONS(ptr, size) {					\
+		size = ROUND_UP_PAGE(size);		 		\
+		if (num_allocations == NUM_ALLOCATIONS)			\
+			panic("too many ADD_TO_ALLOCATIONS()");		\
+		allocations[num_allocations].al_ptr = (void**)&ptr;	\
+		allocations[num_allocations].al_size = size;		\
+		valloc_sz += size;					\
+		++num_allocations;				 	\
+	}
+
+static void
+perform_allocations(void)
+{
+	caddr_t mem;
+	int i;
+
+	mem = BOP_ALLOC(bootops, (caddr_t)valloc_base, valloc_sz, BO_NO_ALIGN);
+	if (mem != (caddr_t)valloc_base)
+		panic("BOP_ALLOC() failed");
+	bzero(mem, valloc_sz);
+	for (i = 0; i < num_allocations; ++i) {
+		*allocations[i].al_ptr = (void *)mem;
+		mem += allocations[i].al_size;
+	}
+}
+
+/*
+ * Our world looks like this at startup time.
+ *
+ * In a 32-bit OS, boot loads the kernel text at 0xfe800000 and kernel data
+ * at 0xfec00000.  On a 64-bit OS, kernel text and data are loaded at
+ * 0xffffffff.fe800000 and 0xffffffff.fec00000 respectively.  Those
+ * addresses are fixed in the binary at link time.
+ *
+ * On the text page:
+ * unix/genunix/krtld/module text loads.
+ *
+ * On the data page:
+ * unix/genunix/krtld/module data loads and space for page_t's.
+ */
+/*
+ * Machine-dependent startup code
+ */
+void
+startup(void)
+{
+	extern void startup_bios_disk();
+	/*
+	 * Make sure that nobody tries to use sekpm until we have
+	 * initialized it properly.
+	 */
+#if defined(__amd64)
+	kpm_desired = kpm_enable;
+#endif
+	kpm_enable = 0;
+
+	progressbar_init();
+	startup_init();
+	startup_memlist();
+	startup_modules();
+	startup_bios_disk();
+	startup_bop_gone();
+	startup_vm();
+	startup_end();
+	progressbar_start();
+}
+
+static void
+startup_init()
+{
+	PRM_POINT("startup_init() starting...");
+
+	/*
+	 * Complete the extraction of cpuid data
+	 */
+	cpuid_pass2(CPU);
+
+	(void) check_boot_version(BOP_GETVERSION(bootops));
+
+	/*
+	 * Check for prom_debug in boot environment
+	 */
+	if (BOP_GETPROPLEN(bootops, "prom_debug") >= 0) {
+		++prom_debug;
+		PRM_POINT("prom_debug found in boot enviroment");
+	}
+
+	/*
+	 * Collect node, cpu and memory configuration information.
+	 */
+	get_system_configuration();
+
+	/*
+	 * Halt if this is an unsupported processor.
+	 */
+	if (x86_type == X86_TYPE_486 || x86_type == X86_TYPE_CYRIX_486) {
+		printf("\n486 processor (\"%s\") detected.\n",
+		    CPU->cpu_brandstr);
+		halt("This processor is not supported by this release "
+		    "of Solaris.");
+	}
+
+	/*
+	 * Set up dummy values till psm spl code installed
+	 */
+	CPU->cpu_pri_data = dummy_cpu_pri;
+
+	PRM_POINT("startup_init() done");
+}
+
+/*
+ * Callback for copy_memlist_filter() to filter nucleus, kadb/kmdb, (ie.
+ * everything mapped above KERNEL_TEXT) pages from phys_avail. Note it
+ * also filters out physical page zero.  There is some reliance on the
+ * boot loader allocating only a few contiguous physical memory chunks.
+ */
+static void
+avail_filter(uint64_t *addr, uint64_t *size)
+{
+	uintptr_t va;
+	uintptr_t next_va;
+	pfn_t pfn;
+	uint64_t pfn_addr;
+	uint64_t pfn_eaddr;
+	uint_t prot;
+	size_t len;
+	uint_t change;
+
+	if (prom_debug)
+		prom_printf("\tFilter: in: a=%" PRIx64 ", s=%" PRIx64 "\n",
+		    *addr, *size);
+
+	/*
+	 * page zero is required for BIOS.. never make it available
+	 */
+	if (*addr == 0) {
+		*addr += MMU_PAGESIZE;
+		*size -= MMU_PAGESIZE;
+	}
+
+	/*
+	 * First we trim from the front of the range. Since hat_boot_probe()
+	 * walks ranges in virtual order, but addr/size are physical, we need
+	 * to the list until no changes are seen.  This deals with the case
+	 * where page "p" is mapped at v, page "p + PAGESIZE" is mapped at w
+	 * but w < v.
+	 */
+	do {
+		change = 0;
+		for (va = KERNEL_TEXT;
+		    *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0;
+		    va = next_va) {
+
+			next_va = va + len;
+			pfn_addr = ptob((uint64_t)pfn);
+			pfn_eaddr = pfn_addr + len;
+
+			if (pfn_addr <= *addr && pfn_eaddr > *addr) {
+				change = 1;
+				while (*size > 0 && len > 0) {
+					*addr += MMU_PAGESIZE;
+					*size -= MMU_PAGESIZE;
+					len -= MMU_PAGESIZE;
+				}
+			}
+		}
+		if (change && prom_debug)
+			prom_printf("\t\ttrim: a=%" PRIx64 ", s=%" PRIx64 "\n",
+			    *addr, *size);
+	} while (change);
+
+	/*
+	 * Trim pages from the end of the range.
+	 */
+	for (va = KERNEL_TEXT;
+	    *size > 0 && hat_boot_probe(&va, &len, &pfn, &prot) != 0;
+	    va = next_va) {
+
+		next_va = va + len;
+		pfn_addr = ptob((uint64_t)pfn);
+
+		if (pfn_addr >= *addr && pfn_addr < *addr + *size)
+			*size = pfn_addr - *addr;
+	}
+
+	if (prom_debug)
+		prom_printf("\tFilter out: a=%" PRIx64 ", s=%" PRIx64 "\n",
+		    *addr, *size);
+}
+
+static void
+kpm_init()
+{
+	struct segkpm_crargs b;
+	uintptr_t start, end;
+	struct memlist	*pmem;
+
+	/*
+	 * These variables were all designed for sfmmu in which segkpm is
+	 * mapped using a single pagesize - either 8KB or 4MB.  On x86, we
+	 * might use 2+ page sizes on a single machine, so none of these
+	 * variables have a single correct value.  They are set up as if we
+	 * always use a 4KB pagesize, which should do no harm.  In the long
+	 * run, we should get rid of KPM's assumption that only a single
+	 * pagesize is used.
+	 */
+	kpm_pgshft = MMU_PAGESHIFT;
+	kpm_pgsz =  MMU_PAGESIZE;
+	kpm_pgoff = MMU_PAGEOFFSET;
+	kpmp2pshft = 0;
+	kpmpnpgs = 1;
+	ASSERT(((uintptr_t)kpm_vbase & (kpm_pgsz - 1)) == 0);
+
+	PRM_POINT("about to create segkpm");
+	rw_enter(&kas.a_lock, RW_WRITER);
+
+	if (seg_attach(&kas, kpm_vbase, kpm_size, segkpm) < 0)
+		panic("cannot attach segkpm");
+
+	b.prot = PROT_READ | PROT_WRITE;
+	b.nvcolors = 1;
+
+	if (segkpm_create(segkpm, (caddr_t)&b) != 0)
+		panic("segkpm_create segkpm");
+
+	rw_exit(&kas.a_lock);
+
+	/*
+	 * Map each of the memsegs into the kpm segment, coalesing adjacent
+	 * memsegs to allow mapping with the largest possible pages.
+	 */
+	pmem = phys_install;
+	start = pmem->address;
+	end = start + pmem->size;
+	for (;;) {
+		if (pmem == NULL || pmem->address > end) {
+			hat_devload(kas.a_hat, kpm_vbase + start,
+			    end - start, mmu_btop(start),
+			    PROT_READ | PROT_WRITE,
+			    HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
+			if (pmem == NULL)
+				break;
+			start = pmem->address;
+		}
+		end = pmem->address + pmem->size;
+		pmem = pmem->next;
+	}
+}
+
+/*
+ * The purpose of startup memlist is to get the system to the
+ * point where it can use kmem_alloc()'s that operate correctly
+ * relying on BOP_ALLOC(). This includes allocating page_ts,
+ * page hash table, vmem initialized, etc.
+ *
+ * Boot's versions of physinstalled and physavail are insufficient for
+ * the kernel's purposes. Specifically we don't know which pages that
+ * are not in physavail can be reclaimed after boot is gone.
+ *
+ * This code solves the problem by dividing the address space
+ * into 3 regions as it takes over the MMU from the booter.
+ *
+ * 1) Any (non-nucleus) pages that are mapped at addresses above KERNEL_TEXT
+ * can not be used by the kernel.
+ *
+ * 2) Any free page that happens to be mapped below kernelbase
+ * is protected until the boot loader is released, but will then be reclaimed.
+ *
+ * 3) Boot shouldn't use any address in the remaining area between kernelbase
+ * and KERNEL_TEXT.
+ *
+ * In the case of multiple mappings to the same page, region 1 has precedence
+ * over region 2.
+ */
+static void
+startup_memlist(void)
+{
+	size_t memlist_sz;
+	size_t memseg_sz;
+	size_t pagehash_sz;
+	size_t pp_sz;
+	uintptr_t va;
+	size_t len;
+	uint_t prot;
+	pfn_t pfn;
+	int memblocks;
+	caddr_t pagecolor_mem;
+	size_t pagecolor_memsz;
+	caddr_t page_ctrs_mem;
+	size_t page_ctrs_size;
+	struct memlist *current;
+	extern void startup_build_mem_nodes(struct memlist *);
+
+	/* XX64 fix these - they should be in include files */
+	extern ulong_t cr4_value;
+	extern size_t page_coloring_init(uint_t, int, int);
+	extern void page_coloring_setup(caddr_t);
+
+	PRM_POINT("startup_memlist() starting...");
+
+	/*
+	 * Take the most current snapshot we can by calling mem-update.
+	 * For this to work properly, we first have to ask boot for its
+	 * end address.
+	 */
+	if (BOP_GETPROPLEN(bootops, "memory-update") == 0)
+		(void) BOP_GETPROP(bootops, "memory-update", NULL);
+
+	/*
+	 * find if the kernel is mapped on a large page
+	 */
+	va = KERNEL_TEXT;
+	if (hat_boot_probe(&va, &len, &pfn, &prot) == 0)
+		panic("Couldn't find kernel text boot mapping");
+
+	/*
+	 * Use leftover large page nucleus text/data space for loadable modules.
+	 * Use at most MODTEXT/MODDATA.
+	 */
+	if (len > MMU_PAGESIZE) {
+
+		moddata = (caddr_t)ROUND_UP_PAGE(e_data);
+		e_moddata = (caddr_t)ROUND_UP_4MEG(e_data);
+		if (e_moddata - moddata > MODDATA)
+			e_moddata = moddata + MODDATA;
+
+		modtext = (caddr_t)ROUND_UP_PAGE(e_text);
+		e_modtext = (caddr_t)ROUND_UP_4MEG(e_text);
+		if (e_modtext - modtext > MODTEXT)
+			e_modtext = modtext + MODTEXT;
+
+
+	} else {
+
+		PRM_POINT("Kernel NOT loaded on Large Page!");
+		e_moddata = moddata = (caddr_t)ROUND_UP_PAGE(e_data);
+		e_modtext = modtext = (caddr_t)ROUND_UP_PAGE(e_text);
+
+	}
+	econtig = e_moddata;
+
+	PRM_DEBUG(modtext);
+	PRM_DEBUG(e_modtext);
+	PRM_DEBUG(moddata);
+	PRM_DEBUG(e_moddata);
+	PRM_DEBUG(econtig);
+
+	/*
+	 * For MP machines cr4_value must be set or the non-boot
+	 * CPUs will not be able to start.
+	 */
+	if (x86_feature & X86_LARGEPAGE)
+		cr4_value = getcr4();
+	PRM_DEBUG(cr4_value);
+
+	/*
+	 * Examine the boot loaders physical memory map to find out:
+	 * - total memory in system - physinstalled
+	 * - the max physical address - physmax
+	 * - the number of segments the intsalled memory comes in
+	 */
+	if (prom_debug)
+		print_boot_memlist("boot physinstalled",
+		    bootops->boot_mem->physinstalled);
+	installed_top_size(bootops->boot_mem->physinstalled, &physmax,
+	    &physinstalled, &memblocks);
+	PRM_DEBUG(physmax);
+	PRM_DEBUG(physinstalled);
+	PRM_DEBUG(memblocks);
+
+	if (prom_debug)
+		print_boot_memlist("boot physavail",
+		    bootops->boot_mem->physavail);
+
+	/*
+	 * Initialize hat's mmu parameters.
+	 * Check for enforce-prot-exec in boot environment. It's used to
+	 * enable/disable support for the page table entry NX bit.
+	 * The default is to enforce PROT_EXEC on processors that support NX.
+	 * Boot seems to round up the "len", but 8 seems to be big enough.
+	 */
+	mmu_init();
+
+#ifdef	__i386
+	/*
+	 * physmax is lowered if there is more memory than can be
+	 * physically addressed in 32 bit (PAE/non-PAE) modes.
+	 */
+	if (mmu.pae_hat) {
+		if (PFN_ABOVE64G(physmax)) {
+			physinstalled -= (physmax - (PFN_64G - 1));
+			physmax = PFN_64G - 1;
+		}
+	} else {
+		if (PFN_ABOVE4G(physmax)) {
+			physinstalled -= (physmax - (PFN_4G - 1));
+			physmax = PFN_4G - 1;
+		}
+	}
+#endif
+
+	startup_build_mem_nodes(bootops->boot_mem->physinstalled);
+
+	if (BOP_GETPROPLEN(bootops, "enforce-prot-exec") >= 0) {
+		int len = BOP_GETPROPLEN(bootops, "enforce-prot-exec");
+		char value[8];
+
+		if (len < 8)
+			(void) BOP_GETPROP(bootops, "enforce-prot-exec", value);
+		else
+			(void) strcpy(value, "");
+		if (strcmp(value, "off") == 0)
+			mmu.pt_nx = 0;
+	}
+	PRM_DEBUG(mmu.pt_nx);
+
+	/*
+	 * We will need page_t's for every page in the system, except for
+	 * memory mapped at or above above the start of the kernel text segment.
+	 *
+	 * pages above e_modtext are attributed to kernel debugger (obp_pages)
+	 */
+	npages = physinstalled - 1; /* avail_filter() skips page 0, so "- 1" */
+	obp_pages = 0;
+	va = KERNEL_TEXT;
+	while (hat_boot_probe(&va, &len, &pfn, &prot) != 0) {
+		npages -= len >> MMU_PAGESHIFT;
+		if (va >= (uintptr_t)e_moddata)
+			obp_pages += len >> MMU_PAGESHIFT;
+		va += len;
+	}
+	PRM_DEBUG(npages);
+	PRM_DEBUG(obp_pages);
+
+	/*
+	 * If physmem is patched to be non-zero, use it instead of
+	 * the computed value unless it is larger than the real
+	 * amount of memory on hand.
+	 */
+	if (physmem == 0 || physmem > npages)
+		physmem = npages;
+	else
+		npages = physmem;
+	PRM_DEBUG(physmem);
+
+	/*
+	 * We now compute the sizes of all the  initial allocations for
+	 * structures the kernel needs in order do kmem_alloc(). These
+	 * include:
+	 *	memsegs
+	 *	memlists
+	 *	page hash table
+	 *	page_t's
+	 *	page coloring data structs
+	 */
+	memseg_sz = sizeof (struct memseg) * (memblocks + POSS_NEW_FRAGMENTS);
+	ADD_TO_ALLOCATIONS(memseg_base, memseg_sz);
+	PRM_DEBUG(memseg_sz);
+
+	/*
+	 * Reserve space for phys_avail/phys_install memlists.
+	 * There's no real good way to know exactly how much room we'll need,
+	 * but this should be a good upper bound.
+	 */
+	memlist_sz = ROUND_UP_PAGE(2 * sizeof (struct memlist) *
+	    (memblocks + POSS_NEW_FRAGMENTS));
+	ADD_TO_ALLOCATIONS(memlist, memlist_sz);
+	PRM_DEBUG(memlist_sz);
+
+	/*
+	 * The page structure hash table size is a power of 2
+	 * such that the average hash chain length is PAGE_HASHAVELEN.
+	 */
+	page_hashsz = npages / PAGE_HASHAVELEN;
+	page_hashsz = 1 << highbit(page_hashsz);
+	pagehash_sz = sizeof (struct page *) * page_hashsz;
+	ADD_TO_ALLOCATIONS(page_hash, pagehash_sz);
+	PRM_DEBUG(pagehash_sz);
+
+	/*
+	 * Set aside room for the page structures themselves.  Note: on
+	 * 64-bit systems we don't allocate page_t's for every page here.
+	 * We just allocate enough to map the lowest 4GB of physical
+	 * memory, minus those pages that are used for the "nucleus" kernel
+	 * text and data.  The remaining pages are allocated once we can
+	 * map around boot.
+	 *
+	 * boot_npages is used to allocate an area big enough for our
+	 * initial page_t's. kphym_init may use less than that.
+	 */
+	boot_npages = npages;
+#if defined(__amd64)
+	if (npages > mmu_btop(FOURGB - (econtig - s_text)))
+		boot_npages = mmu_btop(FOURGB - (econtig - s_text));
+#endif
+	PRM_DEBUG(boot_npages);
+	pp_sz = sizeof (struct page) * boot_npages;
+	ADD_TO_ALLOCATIONS(pp_base, pp_sz);
+	PRM_DEBUG(pp_sz);
+
+	/*
+	 * determine l2 cache info and memory size for page coloring
+	 */
+	(void) getl2cacheinfo(CPU,
+	    &l2cache_sz, &l2cache_linesz, &l2cache_assoc);
+	pagecolor_memsz =
+	    page_coloring_init(l2cache_sz, l2cache_linesz, l2cache_assoc);
+	ADD_TO_ALLOCATIONS(pagecolor_mem, pagecolor_memsz);
+	PRM_DEBUG(pagecolor_memsz);
+
+	page_ctrs_size = page_ctrs_sz();
+	ADD_TO_ALLOCATIONS(page_ctrs_mem, page_ctrs_size);
+	PRM_DEBUG(page_ctrs_size);
+
+	/*
+	 * valloc_base will be below kernel text
+	 * The extra pages are for the HAT and kmdb to map page tables.
+	 */
+	valloc_sz = ROUND_UP_LPAGE(valloc_sz);
+	valloc_base = KERNEL_TEXT - valloc_sz;
+	PRM_DEBUG(valloc_base);
+	ptable_va = valloc_base - ptable_sz;
+
+#if defined(__amd64)
+	if (eprom_kernelbase && eprom_kernelbase != KERNELBASE)
+		cmn_err(CE_NOTE, "!kernelbase cannot be changed on 64-bit "
+		    "systems.");
+	kernelbase = (uintptr_t)KERNELBASE;
+	core_base = (uintptr_t)COREHEAP_BASE;
+	core_size = ptable_va - core_base;
+#else	/* __i386 */
+	/*
+	 * We configure kernelbase based on:
+	 *
+	 * 1. user specified kernelbase via eeprom command. Value cannot exceed
+	 *    KERNELBASE_MAX. we large page align eprom_kernelbase
+	 *
+	 * 2. Default to KERNELBASE and adjust to 2X less the size for page_t.
+	 *    On large memory systems we must lower kernelbase to allow
+	 *    enough room for page_t's for all of memory.
+	 *
+	 * The value set here, might be changed a little later.
+	 */
+	if (eprom_kernelbase) {
+		kernelbase = eprom_kernelbase & mmu.level_mask[1];
+		if (kernelbase > KERNELBASE_MAX)
+			kernelbase = KERNELBASE_MAX;
+	} else {
+		kernelbase = (uintptr_t)KERNELBASE;
+		kernelbase -= ROUND_UP_4MEG(2 * valloc_sz);
+	}
+	ASSERT((kernelbase & mmu.level_offset[1]) == 0);
+	core_base = ptable_va;
+	core_size = 0;
+#endif
+
+	PRM_DEBUG(kernelbase);
+	PRM_DEBUG(core_base);
+	PRM_DEBUG(core_size);
+
+	/*
+	 * At this point, we can only use a portion of the kernelheap that
+	 * will be available after we boot.  Both 32-bit and 64-bit systems
+	 * have this limitation, although the reasons are completely
+	 * different.
+	 *
+	 * On 64-bit systems, the booter only supports allocations in the
+	 * upper 4GB of memory, so we have to work with a reduced kernel
+	 * heap until we take over all allocations.  The booter also sits
+	 * in the lower portion of that 4GB range, so we have to raise the
+	 * bottom of the heap even further.
+	 *
+	 * On 32-bit systems we have to leave room to place segmap below
+	 * the heap.  We don't yet know how large segmap will be, so we
+	 * have to be very conservative.
+	 */
+#if defined(__amd64)
+	/*
+	 * XX64: For now, we let boot have the lower 2GB of the top 4GB
+	 * address range.  In the long run, that should be fixed.  It's
+	 * insane for a booter to need 2 2GB address ranges.
+	 */
+	boot_kernelheap = (caddr_t)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE);
+	segmap_reserved = 0;
+
+#else	/* __i386 */
+	segkp_fromheap = 1;
+	segmap_reserved = ROUND_UP_LPAGE(MAX(segmapsize, SEGMAPMAX));
+	boot_kernelheap = (caddr_t)(ROUND_UP_LPAGE(kernelbase) +
+	    segmap_reserved);
+#endif
+	PRM_DEBUG(boot_kernelheap);
+	kernelheap = boot_kernelheap;
+	ekernelheap = (char *)core_base;
+
+	/*
+	 * If segmap is too large we can push the bottom of the kernel heap
+	 * higher than the base.  Or worse, it could exceed the top of the
+	 * VA space entirely, causing it to wrap around.
+	 */
+	if (kernelheap >= ekernelheap || (uintptr_t)kernelheap < kernelbase)
+		panic("too little memory available for kernelheap,"
+			    " use a different kernelbase");
+
+	/*
+	 * Now that we know the real value of kernelbase,
+	 * update variables that were initialized with a value of
+	 * KERNELBASE (in common/conf/param.c).
+	 *
+	 * XXX	The problem with this sort of hackery is that the
+	 *	compiler just may feel like putting the const declarations
+	 *	(in param.c) into the .text section.  Perhaps they should
+	 *	just be declared as variables there?
+	 */
+
+#if defined(__amd64)
+	ASSERT(_kernelbase == KERNELBASE);
+	ASSERT(_userlimit == USERLIMIT);
+	/*
+	 * As one final sanity check, verify that the "red zone" between
+	 * kernel and userspace is exactly the size we expected.
+	 */
+	ASSERT(_kernelbase == (_userlimit + (2 * 1024 * 1024)));
+#else
+	*(uintptr_t *)&_kernelbase = kernelbase;
+	*(uintptr_t *)&_userlimit = kernelbase;
+	*(uintptr_t *)&_userlimit32 = _userlimit;
+#endif
+	PRM_DEBUG(_kernelbase);
+	PRM_DEBUG(_userlimit);
+	PRM_DEBUG(_userlimit32);
+
+	/*
+	 * do all the initial allocations
+	 */
+	perform_allocations();
+
+	/*
+	 * Initialize the kernel heap. Note 3rd argument must be > 1st.
+	 */
+	kernelheap_init(kernelheap, ekernelheap, kernelheap + MMU_PAGESIZE,
+	    (void *)core_base, (void *)ptable_va);
+
+	/*
+	 * Build phys_install and phys_avail in kernel memspace.
+	 * - phys_install should be all memory in the system.
+	 * - phys_avail is phys_install minus any memory mapped before this
+	 *    point above KERNEL_TEXT.
+	 */
+	current = phys_install = memlist;
+	copy_memlist_filter(bootops->boot_mem->physinstalled, &current, NULL);
+	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
+		panic("physinstalled was too big!");
+	if (prom_debug)
+		print_kernel_memlist("phys_install", phys_install);
+
+	phys_avail = current;
+	PRM_POINT("Building phys_avail:\n");
+	copy_memlist_filter(bootops->boot_mem->physinstalled, &current,
+	    avail_filter);
+	if ((caddr_t)current > (caddr_t)memlist + memlist_sz)
+		panic("physavail was too big!");
+	if (prom_debug)
+		print_kernel_memlist("phys_avail", phys_avail);
+
+	/*
+	 * setup page coloring
+	 */
+	page_coloring_setup(pagecolor_mem);
+	page_lock_init();	/* currently a no-op */
+
+	/*
+	 * free page list counters
+	 */
+	(void) page_ctrs_alloc(page_ctrs_mem);
+
+	/*
+	 * Initialize the page structures from the memory lists.
+	 */
+	availrmem_initial = availrmem = freemem = 0;
+	PRM_POINT("Calling kphysm_init()...");
+	boot_npages = kphysm_init(pp_base, memseg_base, 0, boot_npages);
+	PRM_POINT("kphysm_init() done");
+	PRM_DEBUG(boot_npages);
+
+	/*
+	 * Now that page_t's have been initialized, remove all the
+	 * initial allocation pages from the kernel free page lists.
+	 */
+	boot_mapin((caddr_t)valloc_base, valloc_sz);
+
+	/*
+	 * Initialize kernel memory allocator.
+	 */
+	kmem_init();
+
+	/*
+	 * print this out early so that we know what's going on
+	 */
+	cmn_err(CE_CONT, "?features: %b\n", x86_feature, FMT_X86_FEATURE);
+
+	/*
+	 * Initialize bp_mapin().
+	 */
+	bp_init(MMU_PAGESIZE, HAT_STORECACHING_OK);
+
+#if defined(__i386)
+	if (eprom_kernelbase && (eprom_kernelbase != kernelbase))
+		cmn_err(CE_WARN, "kernelbase value, User specified 0x%lx, "
+		    "System using 0x%lx",
+		    (uintptr_t)eprom_kernelbase, (uintptr_t)kernelbase);
+#endif
+
+#ifdef	KERNELBASE_ABI_MIN
+	if (kernelbase < (uintptr_t)KERNELBASE_ABI_MIN) {
+		cmn_err(CE_NOTE, "!kernelbase set to 0x%lx, system is not "
+		    "i386 ABI compliant.", (uintptr_t)kernelbase);
+	}
+#endif
+
+	PRM_POINT("startup_memlist() done");
+}
+
+static void
+startup_modules(void)
+{
+	unsigned int i;
+	extern void impl_setup_ddi(void);
+	extern void prom_setup(void);
+
+	PRM_POINT("startup_modules() starting...");
+	/*
+	 * Initialize ten-micro second timer so that drivers will
+	 * not get short changed in their init phase. This was
+	 * not getting called until clkinit which, on fast cpu's
+	 * caused the drv_usecwait to be way too short.
+	 */
+	microfind();
+
+	/*
+	 * Read the GMT lag from /etc/rtc_config.
+	 */
+	gmt_lag = process_rtc_config_file();
+
+	/*
+	 * Calculate default settings of system parameters based upon
+	 * maxusers, yet allow to be overridden via the /etc/system file.
+	 */
+	param_calc(0);
+
+	mod_setup();
+
+	/*
+	 * Setup machine check architecture on P6
+	 */
+	setup_mca();
+
+	/*
+	 * Initialize system parameters.
+	 */
+	param_init();
+
+	/*
+	 * maxmem is the amount of physical memory we're playing with.
+	 */
+	maxmem = physmem;
+
+	/*
+	 * Initialize the hat layer.
+	 */
+	hat_init();
+
+	/*
+	 * Initialize segment management stuff.
+	 */
+	seg_init();
+
+	if (modload("fs", "specfs") == -1)
+		halt("Can't load specfs");
+
+	if (modload("fs", "devfs") == -1)
+		halt("Can't load devfs");
+
+	dispinit();
+
+	/*
+	 * This is needed here to initialize hw_serial[] for cluster booting.
+	 */
+	if ((i = modload("misc", "sysinit")) != (unsigned int)-1)
+		(void) modunload(i);
+	else
+		cmn_err(CE_CONT, "sysinit load failed");
+
+	/* Read cluster configuration data. */
+	clconf_init();
+
+	/*
+	 * Create a kernel device tree. First, create rootnex and
+	 * then invoke bus specific code to probe devices.
+	 */
+	setup_ddi();
+	impl_setup_ddi();
+	/*
+	 * Fake a prom tree such that /dev/openprom continues to work
+	 */
+	prom_setup();
+
+	/*
+	 * Load all platform specific modules
+	 */
+	psm_modload();
+
+	PRM_POINT("startup_modules() done");
+}
+
+static void
+startup_bop_gone(void)
+{
+	PRM_POINT("startup_bop_gone() starting...");
+
+	/*
+	 * Do final allocations of HAT data structures that need to
+	 * be allocated before quiescing the boot loader.
+	 */
+	PRM_POINT("Calling hat_kern_alloc()...");
+	hat_kern_alloc();
+	PRM_POINT("hat_kern_alloc() done");
+
+	/*
+	 * Setup MTRR (Memory type range registers)
+	 */
+	setup_mtrr();
+	PRM_POINT("startup_bop_gone() done");
+}
+
+/*
+ * Walk through the pagetables looking for pages mapped in by boot.  If the
+ * setaside flag is set the pages are expected to be returned to the
+ * kernel later in boot, so we add them to the bootpages list.
+ */
+static void
+protect_boot_range(uintptr_t low, uintptr_t high, int setaside)
+{
+	uintptr_t va = low;
+	size_t len;
+	uint_t prot;
+	pfn_t pfn;
+	page_t *pp;
+	pgcnt_t boot_protect_cnt = 0;
+
+	while (hat_boot_probe(&va, &len, &pfn, &prot) != 0 && va < high) {
+		if (va + len >= high)
+			panic("0x%lx byte mapping at 0x%p exceeds boot's "
+			    "legal range.", len, (void *)va);
+
+		while (len > 0) {
+			pp = page_numtopp_alloc(pfn);
+			if (pp != NULL) {
+				if (setaside == 0)
+					panic("Unexpected mapping by boot.  "
+					    "addr=%p pfn=%lx\n",
+					    (void *)va, pfn);
+
+				pp->p_next = bootpages;
+				bootpages = pp;
+				++boot_protect_cnt;
+			}
+
+			++pfn;
+			len -= MMU_PAGESIZE;
+			va += MMU_PAGESIZE;
+		}
+	}
+	PRM_DEBUG(boot_protect_cnt);
+}
+
+static void
+startup_vm(void)
+{
+	struct segmap_crargs a;
+	extern void hat_kern_setup(void);
+	pgcnt_t pages_left;
+
+	PRM_POINT("startup_vm() starting...");
+
+	/*
+	 * The next two loops are done in distinct steps in order
+	 * to be sure that any page that is doubly mapped (both above
+	 * KERNEL_TEXT and below kernelbase) is dealt with correctly.
+	 * Note this may never happen, but it might someday.
+	 */
+
+	bootpages = NULL;
+	PRM_POINT("Protecting boot pages");
+	/*
+	 * Protect any pages mapped above KERNEL_TEXT that somehow have
+	 * page_t's. This can only happen if something weird allocated
+	 * in this range (like kadb/kmdb).
+	 */
+	protect_boot_range(KERNEL_TEXT, (uintptr_t)-1, 0);
+
+	/*
+	 * Before we can take over memory allocation/mapping from the boot
+	 * loader we must remove from our free page lists any boot pages that
+	 * will stay mapped until release_bootstrap().
+	 */
+	protect_boot_range(0, kernelbase, 1);
+#if defined(__amd64)
+	protect_boot_range(BOOT_DOUBLEMAP_BASE,
+	    BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE, 0);
+#endif
+
+	/*
+	 * Copy in boot's page tables, set up extra page tables for the kernel,
+	 * and switch to the kernel's context.
+	 */
+	PRM_POINT("Calling hat_kern_setup()...");
+	hat_kern_setup();
+
+	/*
+	 * It is no longer safe to call BOP_ALLOC(), so make sure we don't.
+	 */
+	bootops->bsys_alloc = NULL;
+	PRM_POINT("hat_kern_setup() done");
+
+	hat_cpu_online(CPU);
+
+	/*
+	 * Before we call kvm_init(), we need to establish the final size
+	 * of the kernel's heap.  So, we need to figure out how much space
+	 * to set aside for segkp, segkpm, and segmap.
+	 */
+	final_kernelheap = (caddr_t)ROUND_UP_LPAGE(kernelbase);
+#if defined(__amd64)
+	if (kpm_desired) {
+		/*
+		 * Segkpm appears at the bottom of the kernel's address
+		 * range.  To detect accidental overruns of the user
+		 * address space, we leave a "red zone" of unmapped memory
+		 * between kernelbase and the beginning of segkpm.
+		 */
+		kpm_vbase = final_kernelheap + KERNEL_REDZONE_SIZE;
+		kpm_size = mmu_ptob(physmax);
+		PRM_DEBUG(kpm_vbase);
+		PRM_DEBUG(kpm_size);
+		final_kernelheap =
+		    (caddr_t)ROUND_UP_TOPLEVEL(kpm_vbase + kpm_size);
+	}
+
+	if (!segkp_fromheap) {
+		size_t sz = mmu_ptob(segkpsize);
+
+		/*
+		 * determine size of segkp and adjust the bottom of the
+		 * kernel's heap.
+		 */
+		if (sz < SEGKPMINSIZE || sz > SEGKPMAXSIZE) {
+			sz = SEGKPDEFSIZE;
+			cmn_err(CE_WARN, "!Illegal value for segkpsize. "
+			    "segkpsize has been reset to %ld pages",
+			    mmu_btop(sz));
+		}
+		sz = MIN(sz, MAX(SEGKPMINSIZE, mmu_ptob(physmem)));
+
+		segkpsize = mmu_btop(ROUND_UP_LPAGE(sz));
+		segkp_base = final_kernelheap;
+		PRM_DEBUG(segkpsize);
+		PRM_DEBUG(segkp_base);
+		final_kernelheap = segkp_base + mmu_ptob(segkpsize);
+		PRM_DEBUG(final_kernelheap);
+	}
+
+	/*
+	 * put the range of VA for device mappings next
+	 */
+	toxic_addr = (uintptr_t)final_kernelheap;
+	PRM_DEBUG(toxic_addr);
+	final_kernelheap = (char *)toxic_addr + toxic_size;
+#endif
+	PRM_DEBUG(final_kernelheap);
+	ASSERT(final_kernelheap < boot_kernelheap);
+
+	/*
+	 * Users can change segmapsize through eeprom or /etc/system.
+	 * If the variable is tuned through eeprom, there is no upper
+	 * bound on the size of segmap.  If it is tuned through
+	 * /etc/system on 32-bit systems, it must be no larger than we
+	 * planned for in startup_memlist().
+	 */
+	segmapsize = MAX(ROUND_UP_LPAGE(segmapsize), SEGMAPDEFAULT);
+	segkmap_start = ROUND_UP_LPAGE((uintptr_t)final_kernelheap);
+
+#if defined(__i386)
+	if (segmapsize > segmap_reserved) {
+		cmn_err(CE_NOTE, "!segmapsize may not be set > 0x%lx in "
+		    "/etc/system.  Use eeprom.", (long)SEGMAPMAX);
+		segmapsize = segmap_reserved;
+	}
+	/*
+	 * 32-bit systems don't have segkpm or segkp, so segmap appears at
+	 * the bottom of the kernel's address range.  Set aside space for a
+	 * red zone just below the start of segmap.
+	 */
+	segkmap_start += KERNEL_REDZONE_SIZE;
+	segmapsize -= KERNEL_REDZONE_SIZE;
+#endif
+	final_kernelheap = (char *)(segkmap_start + segmapsize);
+
+	PRM_DEBUG(segkmap_start);
+	PRM_DEBUG(segmapsize);
+	PRM_DEBUG(final_kernelheap);
+
+	/*
+	 * Initialize VM system
+	 */
+	PRM_POINT("Calling kvm_init()...");
+	kvm_init();
+	PRM_POINT("kvm_init() done");
+
+	/*
+	 * Tell kmdb that the VM system is now working
+	 */
+	if (boothowto & RB_DEBUG)
+		kdi_dvec_vmready();
+
+	/*
+	 * Mangle the brand string etc.
+	 */
+	cpuid_pass3(CPU);
+
+	PRM_DEBUG(final_kernelheap);
+
+	/*
+	 * Now that we can use memory outside the top 4GB (on 64-bit
+	 * systems) and we know the size of segmap, we can set the final
+	 * size of the kernel's heap.  Note: on 64-bit systems we still
+	 * can't touch anything in the bottom half of the top 4GB range
+	 * because boot still has pages mapped there.
+	 */
+	if (final_kernelheap < boot_kernelheap) {
+		kernelheap_extend(final_kernelheap, boot_kernelheap);
+#if defined(__amd64)
+		kmem_setaside = vmem_xalloc(heap_arena, BOOT_DOUBLEMAP_SIZE,
+		    MMU_PAGESIZE, 0, 0, (void *)(BOOT_DOUBLEMAP_BASE),
+		    (void *)(BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE),
+		    VM_NOSLEEP | VM_BESTFIT | VM_PANIC);
+		PRM_DEBUG(kmem_setaside);
+		if (kmem_setaside == NULL)
+			panic("Could not protect boot's memory");
+#endif
+	}
+	/*
+	 * Now that the kernel heap may have grown significantly, we need
+	 * to make all the remaining page_t's available to back that memory.
+	 *
+	 * XX64 this should probably wait till after release boot-strap too.
+	 */
+	pages_left = npages - boot_npages;
+	if (pages_left > 0) {
+		PRM_DEBUG(pages_left);
+		(void) kphysm_init(NULL, memseg_base, boot_npages, pages_left);
+	}
+
+#if defined(__amd64)
+
+	/*
+	 * Create the device arena for toxic (to dtrace/kmdb) mappings.
+	 */
+	device_arena = vmem_create("device", (void *)toxic_addr,
+	    toxic_size, MMU_PAGESIZE, NULL, NULL, NULL, 0, VM_SLEEP);
+
+#else	/* __i386 */
+
+	/*
+	 * allocate the bit map that tracks toxic pages
+	 */
+	toxic_bit_map_len = btop((ulong_t)(ptable_va - kernelbase));
+	PRM_DEBUG(toxic_bit_map_len);
+	toxic_bit_map =
+	    kmem_zalloc(BT_SIZEOFMAP(toxic_bit_map_len), KM_NOSLEEP);
+	ASSERT(toxic_bit_map != NULL);
+	PRM_DEBUG(toxic_bit_map);
+
+#endif	/* __i386 */
+
+
+	/*
+	 * Now that we've got more VA, as well as the ability to allocate from
+	 * it, tell the debugger.
+	 */
+	if (boothowto & RB_DEBUG)
+		kdi_dvec_memavail();
+
+	/*
+	 * The following code installs a special page fault handler (#pf)
+	 * to work around a pentium bug.
+	 */
+#if !defined(__amd64)
+	if (x86_type == X86_TYPE_P5) {
+		gate_desc_t *newidt;
+		desctbr_t    newidt_r;
+
+		if ((newidt = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP)) == NULL)
+			panic("failed to install pentium_pftrap");
+
+		bcopy(idt0, newidt, sizeof (idt0));
+		set_gatesegd(&newidt[T_PGFLT], &pentium_pftrap,
+		    KCS_SEL, 0, SDT_SYSIGT, SEL_KPL);
+
+		(void) as_setprot(&kas, (caddr_t)newidt, MMU_PAGESIZE,
+		    PROT_READ|PROT_EXEC);
+
+		newidt_r.dtr_limit = sizeof (idt0) - 1;
+		newidt_r.dtr_base = (uintptr_t)newidt;
+		CPU->cpu_idt = newidt;
+		wr_idtr(&newidt_r);
+	}
+#endif	/* !__amd64 */
+
+	/*
+	 * Map page pfn=0 for drivers, such as kd, that need to pick up
+	 * parameters left there by controllers/BIOS.
+	 */
+	PRM_POINT("setup up p0_va");
+	p0_va = i86devmap(0, 1, PROT_READ);
+	PRM_DEBUG(p0_va);
+
+	/*
+	 * If the following is true, someone has patched phsymem to be less
+	 * than the number of pages that the system actually has.  Remove
+	 * pages until system memory is limited to the requested amount.
+	 * Since we have allocated page structures for all pages, we
+	 * correct the amount of memory we want to remove by the size of
+	 * the memory used to hold page structures for the non-used pages.
+	 */
+	if (physmem < npages) {
+		uint_t diff;
+		offset_t off;
+		struct page *pp;
+		caddr_t rand_vaddr;
+		struct seg kseg;
+
+		cmn_err(CE_WARN, "limiting physmem to %lu pages", physmem);
+
+		off = 0;
+		diff = npages - physmem;
+		diff -= mmu_btopr(diff * sizeof (struct page));
+		kseg.s_as = &kas;
+		while (diff--) {
+			rand_vaddr = (caddr_t)
+			    (((uintptr_t)&unused_pages_vp >> 7) ^
+			    (uintptr_t)((u_offset_t)off >> MMU_PAGESHIFT));
+			pp = page_create_va(&unused_pages_vp, off, MMU_PAGESIZE,
+				PG_WAIT | PG_EXCL, &kseg, rand_vaddr);
+			if (pp == NULL) {
+				panic("limited physmem too much!");
+				/*NOTREACHED*/
+			}
+			page_io_unlock(pp);
+			page_downgrade(pp);
+			availrmem--;
+			off += MMU_PAGESIZE;
+		}
+	}
+
+	cmn_err(CE_CONT, "?mem = %luK (0x%lx)\n",
+	    physinstalled << (MMU_PAGESHIFT - 10), ptob(physinstalled));
+
+	PRM_POINT("Calling hat_init_finish()...");
+	hat_init_finish();
+	PRM_POINT("hat_init_finish() done");
+
+	/*
+	 * Initialize the segkp segment type.
+	 */
+	rw_enter(&kas.a_lock, RW_WRITER);
+	if (!segkp_fromheap) {
+		if (seg_attach(&kas, (caddr_t)segkp_base, mmu_ptob(segkpsize),
+		    segkp) < 0) {
+			panic("startup: cannot attach segkp");
+			/*NOTREACHED*/
+		}
+	} else {
+		/*
+		 * For 32 bit x86 systems, we will have segkp under the heap.
+		 * There will not be a segkp segment.  We do, however, need
+		 * to fill in the seg structure.
+		 */
+		segkp->s_as = &kas;
+	}
+	if (segkp_create(segkp) != 0) {
+		panic("startup: segkp_create failed");
+		/*NOTREACHED*/
+	}
+	PRM_DEBUG(segkp);
+	rw_exit(&kas.a_lock);
+
+	/*
+	 * kpm segment
+	 */
+	segmap_kpm = 0;
+	if (kpm_desired) {
+		kpm_init();
+		kpm_enable = 1;
+	}
+
+	/*
+	 * Now create segmap segment.
+	 */
+	rw_enter(&kas.a_lock, RW_WRITER);
+	if (seg_attach(&kas, (caddr_t)segkmap_start, segmapsize, segkmap) < 0) {
+		panic("cannot attach segkmap");
+		/*NOTREACHED*/
+	}
+	PRM_DEBUG(segkmap);
+
+	/*
+	 * The 64 bit HAT permanently maps only segmap's page tables.
+	 * The 32 bit HAT maps the heap's page tables too.
+	 */
+#if defined(__amd64)
+	hat_kmap_init(segkmap_start, segmapsize);
+#else /* __i386 */
+	ASSERT(segkmap_start + segmapsize == (uintptr_t)final_kernelheap);
+	hat_kmap_init(segkmap_start, (uintptr_t)ekernelheap - segkmap_start);
+#endif /* __i386 */
+
+	a.prot = PROT_READ | PROT_WRITE;
+	a.shmsize = 0;
+	a.nfreelist = segmapfreelists;
+
+	if (segmap_create(segkmap, (caddr_t)&a) != 0)
+		panic("segmap_create segkmap");
+	rw_exit(&kas.a_lock);
+
+	setup_vaddr_for_ppcopy(CPU);
+
+	segdev_init();
+	pmem_init();
+	PRM_POINT("startup_vm() done");
+}
+
+static void
+startup_end(void)
+{
+	extern void setx86isalist(void);
+
+	PRM_POINT("startup_end() starting...");
+
+	/*
+	 * Perform tasks that get done after most of the VM
+	 * initialization has been done but before the clock
+	 * and other devices get started.
+	 */
+	kern_setup1();
+
+	/*
+	 * Perform CPC initialization for this CPU.
+	 */
+	kcpc_hw_init(CPU);
+
+#if defined(__amd64)
+	/*
+	 * Validate support for syscall/sysret
+	 * XX64 -- include SSE, SSE2, etc. here too?
+	 */
+	if ((x86_feature & X86_ASYSC) == 0) {
+		cmn_err(CE_WARN,
+		    "cpu%d does not support syscall/sysret", CPU->cpu_id);
+	}
+#endif
+	/*
+	 * Configure the system.
+	 */
+	PRM_POINT("Calling configure()...");
+	configure();		/* set up devices */
+	PRM_POINT("configure() done");
+
+	/*
+	 * Set the isa_list string to the defined instruction sets we
+	 * support.
+	 */
+	setx86isalist();
+	init_intr_threads(CPU);
+	psm_install();
+
+	/*
+	 * We're done with bootops.  We don't unmap the bootstrap yet because
+	 * we're still using bootsvcs.
+	 */
+	PRM_POINT("zeroing out bootops");
+	*bootopsp = (struct bootops *)0;
+	bootops = (struct bootops *)NULL;
+
+	PRM_POINT("Enabling interrupts");
+	(*picinitf)();
+	sti();
+
+	(void) add_avsoftintr((void *)&softlevel1_hdl, 1, softlevel1,
+		"softlevel1", NULL, NULL); /* XXX to be moved later */
+
+	PRM_POINT("startup_end() done");
+}
+
+extern char hw_serial[];
+char *_hs1107 = hw_serial;
+ulong_t  _bdhs34;
+
+void
+post_startup(void)
+{
+	extern void memscrub_init(void);
+
+	/*
+	 * Set the system wide, processor-specific flags to be passed
+	 * to userland via the aux vector for performance hints and
+	 * instruction set extensions.
+	 */
+	bind_hwcap();
+
+	/*
+	 * Startup memory scrubber.
+	 */
+	(void) memscrub_init();
+
+	/*
+	 * Perform forceloading tasks for /etc/system.
+	 */
+	(void) mod_sysctl(SYS_FORCELOAD, NULL);
+
+	/*
+	 * complete mmu initialization, now that kernel and critical
+	 * modules have been loaded.
+	 */
+	(void) post_startup_mmu_initialization();
+
+	/*
+	 * ON4.0: Force /proc module in until clock interrupt handle fixed
+	 * ON4.0: This must be fixed or restated in /etc/systems.
+	 */
+	(void) modload("fs", "procfs");
+
+#if defined(__i386)
+	/*
+	 * Check for required functional Floating Point hardware,
+	 * unless FP hardware explicitly disabled.
+	 */
+	if (fpu_exists && (fpu_pentium_fdivbug || fp_kind == FP_NO))
+		halt("No working FP hardware found");
+#endif
+
+	maxmem = freemem;
+
+	add_cpunode2devtree(CPU->cpu_id, CPU->cpu_m.mcpu_cpi);
+
+	/*
+	 * Perform the formal initialization of the boot chip,
+	 * and associate the boot cpu with it.
+	 * This must be done after the cpu node for CPU has been
+	 * added to the device tree, when the necessary probing to
+	 * know the chip type and chip "id" is performed.
+	 */
+	chip_cpu_init(CPU);
+	chip_cpu_assign(CPU);
+}
+
+static int
+pp_in_ramdisk(page_t *pp)
+{
+	extern uint64_t ramdisk_start, ramdisk_end;
+
+	return ((pp->p_pagenum >= btop(ramdisk_start)) &&
+	    (pp->p_pagenum < btopr(ramdisk_end)));
+}
+
+void
+release_bootstrap(void)
+{
+	int root_is_ramdisk;
+	pfn_t pfn;
+	page_t *pp;
+	extern void kobj_boot_unmountroot(void);
+	extern dev_t rootdev;
+
+	/* unmount boot ramdisk and release kmem usage */
+	kobj_boot_unmountroot();
+
+	/*
+	 * We're finished using the boot loader so free its pages.
+	 */
+	PRM_POINT("Unmapping lower boot pages");
+	clear_boot_mappings(0, kernelbase);
+#if defined(__amd64)
+	PRM_POINT("Unmapping upper boot pages");
+	clear_boot_mappings(BOOT_DOUBLEMAP_BASE,
+	    BOOT_DOUBLEMAP_BASE + BOOT_DOUBLEMAP_SIZE);
+#endif
+
+	/*
+	 * If root isn't on ramdisk, destroy the hardcoded
+	 * ramdisk node now and release the memory. Else,
+	 * ramdisk memory is kept in rd_pages.
+	 */
+	root_is_ramdisk = (getmajor(rootdev) == ddi_name_to_major("ramdisk"));
+	if (!root_is_ramdisk) {
+		dev_info_t *dip = ddi_find_devinfo("ramdisk", -1, 0);
+		ASSERT(dip && ddi_get_parent(dip) == ddi_root_node());
+		ndi_rele_devi(dip);	/* held from ddi_find_devinfo */
+		(void) ddi_remove_child(dip, 0);
+	}
+
+	PRM_POINT("Releasing boot pages");
+	while (bootpages) {
+		pp = bootpages;
+		bootpages = pp->p_next;
+		if (root_is_ramdisk && pp_in_ramdisk(pp)) {
+			pp->p_next = rd_pages;
+			rd_pages = pp;
+			continue;
+		}
+		pp->p_next = (struct page *)0;
+		page_free(pp, 1);
+	}
+
+	/*
+	 * Find 1 page below 1 MB so that other processors can boot up.
+	 * Make sure it has a kernel VA as well as a 1:1 mapping.
+	 * We should have just free'd one up.
+	 */
+	if (use_mp) {
+		for (pfn = 1; pfn < btop(1*1024*1024); pfn++) {
+			if (page_numtopp_alloc(pfn) == NULL)
+				continue;
+			rm_platter_va = i86devmap(pfn, 1,
+			    PROT_READ | PROT_WRITE | PROT_EXEC);
+			rm_platter_pa = ptob(pfn);
+			hat_devload(kas.a_hat,
+			    (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
+			    pfn, PROT_READ | PROT_WRITE | PROT_EXEC,
+			    HAT_LOAD_NOCONSIST);
+			break;
+		}
+		if (pfn == btop(1*1024*1024))
+			panic("No page available for starting "
+			    "other processors");
+	}
+
+#if defined(__amd64)
+	PRM_POINT("Returning boot's VA space to kernel heap");
+	if (kmem_setaside != NULL)
+		vmem_free(heap_arena, kmem_setaside, BOOT_DOUBLEMAP_SIZE);
+#endif
+}
+
+/*
+ * Initialize the platform-specific parts of a page_t.
+ */
+void
+add_physmem_cb(page_t *pp, pfn_t pnum)
+{
+	pp->p_pagenum = pnum;
+	pp->p_mapping = NULL;
+	pp->p_embed = 0;
+	pp->p_share = 0;
+	pp->p_mlentry = 0;
+}
+
+/*
+ * kphysm_init() initializes physical memory.
+ */
+static pgcnt_t
+kphysm_init(
+	page_t *inpp,
+	struct memseg *memsegp,
+	pgcnt_t start,
+	pgcnt_t npages)
+{
+	struct memlist	*pmem;
+	struct memseg	*cur_memseg;
+	struct memseg	**memsegpp;
+	pfn_t		base_pfn;
+	pgcnt_t		num;
+	pgcnt_t		total_skipped = 0;
+	pgcnt_t		skipping = 0;
+	pgcnt_t		pages_done = 0;
+	pgcnt_t		largepgcnt;
+	uint64_t	addr;
+	uint64_t	size;
+	page_t		*pp = inpp;
+	int		dobreak = 0;
+	extern pfn_t	ddiphysmin;
+
+	ASSERT(page_hash != NULL && page_hashsz != 0);
+
+	for (cur_memseg = memsegp; cur_memseg->pages != NULL; cur_memseg++);
+	ASSERT(cur_memseg == memsegp || start > 0);
+
+	for (pmem = phys_avail; pmem && npages; pmem = pmem->next) {
+		/*
+		 * In a 32 bit kernel can't use higher memory if we're
+		 * not booting in PAE mode. This check takes care of that.
+		 */
+		addr = pmem->address;
+		size = pmem->size;
+		if (btop(addr) > physmax)
+			continue;
+
+		/*
+		 * align addr and size - they may not be at page boundaries
+		 */
+		if ((addr & MMU_PAGEOFFSET) != 0) {
+			addr += MMU_PAGEOFFSET;
+			addr &= ~(uint64_t)MMU_PAGEOFFSET;
+			size -= addr - pmem->address;
+		}
+
+		/* only process pages below physmax */
+		if (btop(addr + size) > physmax)
+			size = ptob(physmax - btop(addr));
+
+		num = btop(size);
+		if (num == 0)
+			continue;
+
+		if (total_skipped < start) {
+			if (start - total_skipped > num) {
+				total_skipped += num;
+				continue;
+			}
+			skipping = start - total_skipped;
+			num -= skipping;
+			addr += (MMU_PAGESIZE * skipping);
+			total_skipped = start;
+		}
+		if (num == 0)
+			continue;
+
+		if (num > npages)
+			num = npages;
+
+		npages -= num;
+		pages_done += num;
+		base_pfn = btop(addr);
+
+		/*
+		 * If the caller didn't provide space for the page
+		 * structures, carve them out of the memseg they will
+		 * represent.
+		 */
+		if (pp == NULL) {
+			pgcnt_t pp_pgs;
+
+			if (num <= 1)
+				continue;
+
+			/*
+			 * Compute how many of the pages we need to use for
+			 * page_ts
+			 */
+			pp_pgs = (num * sizeof (page_t)) / MMU_PAGESIZE + 1;
+			while (mmu_ptob(pp_pgs - 1) / sizeof (page_t) >=
+			    num - pp_pgs + 1)
+				--pp_pgs;
+			PRM_DEBUG(pp_pgs);
+
+			pp = vmem_alloc(heap_arena, mmu_ptob(pp_pgs),
+			    VM_NOSLEEP);
+			if (pp == NULL) {
+				cmn_err(CE_WARN, "Unable to add %ld pages to "
+				    "the system.", num);
+				continue;
+			}
+
+			hat_devload(kas.a_hat, (void *)pp, mmu_ptob(pp_pgs),
+			    base_pfn, PROT_READ | PROT_WRITE | HAT_UNORDERED_OK,
+			    HAT_LOAD | HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
+			bzero(pp, mmu_ptob(pp_pgs));
+			num -= pp_pgs;
+			base_pfn += pp_pgs;
+		}
+
+		if (prom_debug)
+			prom_printf("MEMSEG addr=0x%" PRIx64
+			    " pgs=0x%lx pfn 0x%lx-0x%lx\n",
+			    addr, num, base_pfn, base_pfn + num);
+
+		/*
+		 * drop pages below ddiphysmin to simplify ddi memory
+		 * allocation with non-zero addr_lo requests.
+		 */
+		if (base_pfn < ddiphysmin) {
+			if (base_pfn + num <= ddiphysmin) {
+				/* drop entire range below ddiphysmin */
+				continue;
+			}
+			/* adjust range to ddiphysmin */
+			pp += (ddiphysmin - base_pfn);
+			num -= (ddiphysmin - base_pfn);
+			base_pfn = ddiphysmin;
+		}
+		/*
+		 * Build the memsegs entry
+		 */
+		cur_memseg->pages = pp;
+		cur_memseg->epages = pp + num;
+		cur_memseg->pages_base = base_pfn;
+		cur_memseg->pages_end = base_pfn + num;
+
+		/*
+		 * insert in memseg list in decreasing pfn range order.
+		 * Low memory is typically more fragmented such that this
+		 * ordering keeps the larger ranges at the front of the list
+		 * for code that searches memseg.
+		 */
+		memsegpp = &memsegs;
+		for (;;) {
+			if (*memsegpp == NULL) {
+				/* empty memsegs */
+				memsegs = cur_memseg;
+				break;
+			}
+			/* check for continuity with start of memsegpp */
+			if (cur_memseg->pages_end == (*memsegpp)->pages_base) {
+				if (cur_memseg->epages == (*memsegpp)->pages) {
+					/*
+					 * contiguous pfn and page_t's. Merge
+					 * cur_memseg into *memsegpp. Drop
+					 * cur_memseg
+					 */
+					(*memsegpp)->pages_base =
+					    cur_memseg->pages_base;
+					(*memsegpp)->pages =
+					    cur_memseg->pages;
+					/*
+					 * check if contiguous with the end of
+					 * the next memseg.
+					 */
+					if ((*memsegpp)->next &&
+					    ((*memsegpp)->pages_base ==
+					    (*memsegpp)->next->pages_end)) {
+						cur_memseg = *memsegpp;
+						memsegpp = &((*memsegpp)->next);
+						dobreak = 1;
+					} else {
+						break;
+					}
+				} else {
+					/*
+					 * contiguous pfn but not page_t's.
+					 * drop last pfn/page_t in cur_memseg
+					 * to prevent creation of large pages
+					 * with noncontiguous page_t's if not
+					 * aligned to largest page boundary.
+					 */
+					largepgcnt = page_get_pagecnt(
+					    page_num_pagesizes() - 1);
+
+					if (cur_memseg->pages_end &
+					    (largepgcnt - 1)) {
+						num--;
+						cur_memseg->epages--;
+						cur_memseg->pages_end--;
+					}
+				}
+			}
+
+			/* check for continuity with end of memsegpp */
+			if (cur_memseg->pages_base == (*memsegpp)->pages_end) {
+				if (cur_memseg->pages == (*memsegpp)->epages) {
+					/*
+					 * contiguous pfn and page_t's. Merge
+					 * cur_memseg into *memsegpp. Drop
+					 * cur_memseg.
+					 */
+					if (dobreak) {
+						/* merge previously done */
+						cur_memseg->pages =
+						    (*memsegpp)->pages;
+						cur_memseg->pages_base =
+						    (*memsegpp)->pages_base;
+						cur_memseg->next =
+						    (*memsegpp)->next;
+					} else {
+						(*memsegpp)->pages_end =
+						    cur_memseg->pages_end;
+						(*memsegpp)->epages =
+						    cur_memseg->epages;
+					}
+					break;
+				}
+				/*
+				 * contiguous pfn but not page_t's.
+				 * drop first pfn/page_t in cur_memseg
+				 * to prevent creation of large pages
+				 * with noncontiguous page_t's if not
+				 * aligned to largest page boundary.
+				 */
+				largepgcnt = page_get_pagecnt(
+				    page_num_pagesizes() - 1);
+				if (base_pfn & (largepgcnt - 1)) {
+					num--;
+					base_pfn++;
+					cur_memseg->pages++;
+					cur_memseg->pages_base++;
+					pp = cur_memseg->pages;
+				}
+				if (dobreak)
+					break;
+			}
+
+			if (cur_memseg->pages_base >=
+			    (*memsegpp)->pages_end) {
+				cur_memseg->next = *memsegpp;
+				*memsegpp = cur_memseg;
+				break;
+			}
+			if ((*memsegpp)->next == NULL) {
+				cur_memseg->next = NULL;
+				(*memsegpp)->next = cur_memseg;
+				break;
+			}
+			memsegpp = &((*memsegpp)->next);
+			ASSERT(*memsegpp != NULL);
+		}
+
+		/*
+		 * add_physmem() initializes the PSM part of the page
+		 * struct by calling the PSM back with add_physmem_cb().
+		 * In addition it coalesces pages into larger pages as
+		 * it initializes them.
+		 */
+		add_physmem(pp, num, base_pfn);
+		cur_memseg++;
+		availrmem_initial += num;
+		availrmem += num;
+
+		/*
+		 * If the caller provided the page frames to us, then
+		 * advance in that list.  Otherwise, prepare to allocate
+		 * our own page frames for the next memseg.
+		 */
+		pp = (inpp == NULL) ? NULL : pp + num;
+	}
+
+	PRM_DEBUG(availrmem_initial);
+	PRM_DEBUG(availrmem);
+	PRM_DEBUG(freemem);
+	build_pfn_hash();
+	return (pages_done);
+}
+
+/*
+ * Kernel VM initialization.
+ */
+static void
+kvm_init(void)
+{
+#ifdef DEBUG
+	extern void _start();
+
+	ASSERT((caddr_t)_start == s_text);
+#endif
+	ASSERT((((uintptr_t)s_text) & MMU_PAGEOFFSET) == 0);
+
+	/*
+	 * Put the kernel segments in kernel address space.
+	 */
+	rw_enter(&kas.a_lock, RW_WRITER);
+	as_avlinit(&kas);
+
+	(void) seg_attach(&kas, s_text, e_moddata - s_text, &ktextseg);
+	(void) segkmem_create(&ktextseg);
+
+	(void) seg_attach(&kas, (caddr_t)valloc_base, valloc_sz, &kvalloc);
+	(void) segkmem_create(&kvalloc);
+
+	/*
+	 * We're about to map out /boot.  This is the beginning of the
+	 * system resource management transition. We can no longer
+	 * call into /boot for I/O or memory allocations.
+	 *
+	 * XX64 - Is this still correct with kernelheap_extend() being called
+	 * later than this????
+	 */
+	(void) seg_attach(&kas, final_kernelheap,
+	    ekernelheap - final_kernelheap, &kvseg);
+	(void) segkmem_create(&kvseg);
+
+#if defined(__amd64)
+	(void) seg_attach(&kas, (caddr_t)core_base, core_size, &kvseg_core);
+	(void) segkmem_create(&kvseg_core);
+#endif
+
+	(void) seg_attach(&kas, (caddr_t)SEGDEBUGBASE, (size_t)SEGDEBUGSIZE,
+	    &kdebugseg);
+	(void) segkmem_create(&kdebugseg);
+
+	rw_exit(&kas.a_lock);
+
+	/*
+	 * Ensure that the red zone at kernelbase is never accessible.
+	 */
+	(void) as_setprot(&kas, (caddr_t)kernelbase, KERNEL_REDZONE_SIZE, 0);
+
+	/*
+	 * Make the text writable so that it can be hot patched by DTrace.
+	 */
+	(void) as_setprot(&kas, s_text, e_modtext - s_text,
+	    PROT_READ | PROT_WRITE | PROT_EXEC);
+
+	/*
+	 * Make data writable until end.
+	 */
+	(void) as_setprot(&kas, s_data, e_moddata - s_data,
+	    PROT_READ | PROT_WRITE | PROT_EXEC);
+}
+
+/*
+ * These are MTTR registers supported by P6
+ */
+static struct	mtrrvar	mtrrphys_arr[MAX_MTRRVAR];
+static uint64_t mtrr64k, mtrr16k1, mtrr16k2;
+static uint64_t mtrr4k1, mtrr4k2, mtrr4k3;
+static uint64_t mtrr4k4, mtrr4k5, mtrr4k6;
+static uint64_t mtrr4k7, mtrr4k8, mtrrcap;
+uint64_t mtrrdef, pat_attr_reg;
+
+/*
+ * Disable reprogramming of MTRRs by default.
+ */
+int	enable_relaxed_mtrr = 0;
+
+/*
+ * These must serve for Pentium, Pentium Pro (P6/Pentium II/Pentium III)
+ * and Pentium 4, and yes, they are named 0, 1, 2, 4, 3 in ascending
+ * address order (starting from 0x400).  The Pentium 4 only implements
+ * 4 sets, and while they are named 0-3 in the doc, the corresponding
+ * names for P6 are 0,1,2,4.  So define these arrays in address order
+ * so that they work for both pre-Pentium4 and Pentium 4 processors.
+ */
+
+static uint_t	mci_ctl[] = {REG_MC0_CTL, REG_MC1_CTL, REG_MC2_CTL,
+		    REG_MC4_CTL, REG_MC3_CTL};
+static uint_t	mci_status[] = {REG_MC0_STATUS, REG_MC1_STATUS, REG_MC2_STATUS,
+		    REG_MC4_STATUS, REG_MC3_STATUS};
+static uint_t	mci_addr[] = {REG_MC0_ADDR, REG_MC1_ADDR, REG_MC2_ADDR,
+		    REG_MC4_ADDR, REG_MC3_ADDR};
+static int	mca_cnt;
+
+
+void
+setup_mca()
+{
+	int 		i;
+	uint64_t	allzeros;
+	uint64_t	allones;
+	uint64_t	mca_cap;
+
+	if (!(x86_feature & X86_MCA))
+		return;
+	(void) rdmsr(REG_MCG_CAP, &mca_cap);
+	allones = 0xffffffffffffffffULL;
+	if (mca_cap & MCG_CAP_CTL_P)
+		(void) wrmsr(REG_MCG_CTL, &allones);
+	mca_cnt = mca_cap & MCG_CAP_COUNT_MASK;
+	if (mca_cnt > P6_MCG_CAP_COUNT)
+		mca_cnt = P6_MCG_CAP_COUNT;
+	for (i = 1; i < mca_cnt; i++)
+		(void) wrmsr(mci_ctl[i], &allones);
+	allzeros = 0;
+	for (i = 0; i < mca_cnt; i++)
+		(void) wrmsr(mci_status[i], &allzeros);
+	setcr4(getcr4() | CR4_MCE);
+
+}
+
+int
+mca_exception(struct regs *rp)
+{
+	uint64_t	status, addr;
+	uint64_t	allzeros;
+	uint64_t	buf;
+	int		i, ret = 1, errcode, mserrcode;
+
+	allzeros = 0;
+	(void) rdmsr(REG_MCG_STATUS, &buf);
+	status = buf;
+	if (status & MCG_STATUS_RIPV)
+		ret = 0;
+	if (status & MCG_STATUS_EIPV)
+		cmn_err(CE_WARN, "MCE at 0x%lx", rp->r_pc);
+	(void) wrmsr(REG_MCG_STATUS, &allzeros);
+	for (i = 0; i < mca_cnt; i++) {
+		(void) rdmsr(mci_status[i], &buf);
+		status = buf;
+		/*
+		 * If status register not valid skip this bank
+		 */
+		if (!(status & MCI_STATUS_VAL))
+			continue;
+		errcode = status & MCI_STATUS_ERRCODE;
+		mserrcode = (status  >> MSERRCODE_SHFT) & MCI_STATUS_ERRCODE;
+		if (status & MCI_STATUS_ADDRV) {
+			/*
+			 * If mci_addr contains the address where
+			 * error occurred, display the address
+			 */
+			(void) rdmsr(mci_addr[i], &buf);
+			addr = buf;
+			cmn_err(CE_WARN, "MCE: Bank %d: error code 0x%x:"\
+			    "addr = 0x%" PRIx64 ", model errcode = 0x%x", i,
+			    errcode, addr, mserrcode);
+		} else {
+			cmn_err(CE_WARN,
+			    "MCE: Bank %d: error code 0x%x, mserrcode = 0x%x",
+			    i, errcode, mserrcode);
+		}
+		(void) wrmsr(mci_status[i], &allzeros);
+	}
+	return (ret);
+}
+
+void
+setup_mtrr()
+{
+	int i, ecx;
+	int vcnt;
+	struct	mtrrvar	*mtrrphys;
+
+	if (!(x86_feature & X86_MTRR))
+		return;
+
+	(void) rdmsr(REG_MTRRCAP, &mtrrcap);
+	(void) rdmsr(REG_MTRRDEF, &mtrrdef);
+	if (mtrrcap & MTRRCAP_FIX) {
+		(void) rdmsr(REG_MTRR64K, &mtrr64k);
+		(void) rdmsr(REG_MTRR16K1, &mtrr16k1);
+		(void) rdmsr(REG_MTRR16K2, &mtrr16k2);
+		(void) rdmsr(REG_MTRR4K1, &mtrr4k1);
+		(void) rdmsr(REG_MTRR4K2, &mtrr4k2);
+		(void) rdmsr(REG_MTRR4K3, &mtrr4k3);
+		(void) rdmsr(REG_MTRR4K4, &mtrr4k4);
+		(void) rdmsr(REG_MTRR4K5, &mtrr4k5);
+		(void) rdmsr(REG_MTRR4K6, &mtrr4k6);
+		(void) rdmsr(REG_MTRR4K7, &mtrr4k7);
+		(void) rdmsr(REG_MTRR4K8, &mtrr4k8);
+	}
+	if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR)
+		vcnt = MAX_MTRRVAR;
+
+	for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr;
+		i <  vcnt - 1; i++, ecx += 2, mtrrphys++) {
+		(void) rdmsr(ecx, &mtrrphys->mtrrphys_base);
+		(void) rdmsr(ecx + 1, &mtrrphys->mtrrphys_mask);
+		if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) {
+			mtrrphys->mtrrphys_mask &= ~MTRRPHYSMASK_V;
+		}
+	}
+	if (x86_feature & X86_PAT) {
+		if (enable_relaxed_mtrr)
+			mtrrdef = MTRR_TYPE_WB|MTRRDEF_FE|MTRRDEF_E;
+		pat_attr_reg = PAT_DEFAULT_ATTRIBUTE;
+	}
+
+	mtrr_sync();
+}
+
+/*
+ * Sync current cpu mtrr with the incore copy of mtrr.
+ * This function has to be invoked with interrupts disabled
+ * Currently we do not capture other cpu's. This is invoked on cpu0
+ * just after reading /etc/system.
+ * On other cpu's its invoked from mp_startup().
+ */
+void
+mtrr_sync()
+{
+	uint64_t my_mtrrdef;
+	uint_t	crvalue, cr0_orig;
+	int	vcnt, i, ecx;
+	struct	mtrrvar	*mtrrphys;
+
+	cr0_orig = crvalue = getcr0();
+	crvalue |= CR0_CD;
+	crvalue &= ~CR0_NW;
+	setcr0(crvalue);
+	invalidate_cache();
+	setcr3(getcr3());
+
+	if (x86_feature & X86_PAT) {
+		(void) wrmsr(REG_MTRRPAT, &pat_attr_reg);
+	}
+	(void) rdmsr(REG_MTRRDEF, &my_mtrrdef);
+	my_mtrrdef &= ~MTRRDEF_E;
+	(void) wrmsr(REG_MTRRDEF, &my_mtrrdef);
+	if (mtrrcap & MTRRCAP_FIX) {
+		(void) wrmsr(REG_MTRR64K, &mtrr64k);
+		(void) wrmsr(REG_MTRR16K1, &mtrr16k1);
+		(void) wrmsr(REG_MTRR16K2, &mtrr16k2);
+		(void) wrmsr(REG_MTRR4K1, &mtrr4k1);
+		(void) wrmsr(REG_MTRR4K2, &mtrr4k2);
+		(void) wrmsr(REG_MTRR4K3, &mtrr4k3);
+		(void) wrmsr(REG_MTRR4K4, &mtrr4k4);
+		(void) wrmsr(REG_MTRR4K5, &mtrr4k5);
+		(void) wrmsr(REG_MTRR4K6, &mtrr4k6);
+		(void) wrmsr(REG_MTRR4K7, &mtrr4k7);
+		(void) wrmsr(REG_MTRR4K8, &mtrr4k8);
+	}
+	if ((vcnt = (mtrrcap & MTRRCAP_VCNTMASK)) > MAX_MTRRVAR)
+		vcnt = MAX_MTRRVAR;
+	for (i = 0, ecx = REG_MTRRPHYSBASE0, mtrrphys = mtrrphys_arr;
+		i <  vcnt - 1; i++, ecx += 2, mtrrphys++) {
+		(void) wrmsr(ecx, &mtrrphys->mtrrphys_base);
+		(void) wrmsr(ecx + 1, &mtrrphys->mtrrphys_mask);
+	}
+	(void) wrmsr(REG_MTRRDEF, &mtrrdef);
+	setcr3(getcr3());
+	invalidate_cache();
+	setcr0(cr0_orig);
+}
+
+/*
+ * resync mtrr so that BIOS is happy. Called from mdboot
+ */
+void
+mtrr_resync()
+{
+	if ((x86_feature & X86_PAT) && enable_relaxed_mtrr) {
+		/*
+		 * We could have changed the default mtrr definition.
+		 * Put it back to uncached which is what it is at power on
+		 */
+		mtrrdef = MTRR_TYPE_UC|MTRRDEF_FE|MTRRDEF_E;
+		mtrr_sync();
+	}
+}
+
+void
+get_system_configuration()
+{
+	char	prop[32];
+	u_longlong_t nodes_ll, cpus_pernode_ll, lvalue;
+
+	if (((BOP_GETPROPLEN(bootops, "nodes") > sizeof (prop)) ||
+		(BOP_GETPROP(bootops, "nodes", prop) < 0) 	||
+		(kobj_getvalue(prop, &nodes_ll) == -1) ||
+		(nodes_ll > MAXNODES))			   ||
+	    ((BOP_GETPROPLEN(bootops, "cpus_pernode") > sizeof (prop)) ||
+		(BOP_GETPROP(bootops, "cpus_pernode", prop) < 0) ||
+		(kobj_getvalue(prop, &cpus_pernode_ll) == -1))) {
+
+		system_hardware.hd_nodes = 1;
+		system_hardware.hd_cpus_per_node = 0;
+	} else {
+		system_hardware.hd_nodes = (int)nodes_ll;
+		system_hardware.hd_cpus_per_node = (int)cpus_pernode_ll;
+	}
+	if ((BOP_GETPROPLEN(bootops, "kernelbase") > sizeof (prop)) ||
+		(BOP_GETPROP(bootops, "kernelbase", prop) < 0) 	||
+		(kobj_getvalue(prop, &lvalue) == -1))
+			eprom_kernelbase = NULL;
+	else
+			eprom_kernelbase = (uintptr_t)lvalue;
+
+	if ((BOP_GETPROPLEN(bootops, "segmapsize") > sizeof (prop)) ||
+	    (BOP_GETPROP(bootops, "segmapsize", prop) < 0) ||
+	    (kobj_getvalue(prop, &lvalue) == -1)) {
+		segmapsize = SEGMAPDEFAULT;
+	} else {
+		segmapsize = (uintptr_t)lvalue;
+	}
+
+	if ((BOP_GETPROPLEN(bootops, "segmapfreelists") > sizeof (prop)) ||
+	    (BOP_GETPROP(bootops, "segmapfreelists", prop) < 0) ||
+	    (kobj_getvalue(prop, &lvalue) == -1)) {
+		segmapfreelists = 0;	/* use segmap driver default */
+	} else {
+		segmapfreelists = (int)lvalue;
+	}
+}
+
+/*
+ * Add to a memory list.
+ * start = start of new memory segment
+ * len = length of new memory segment in bytes
+ * new = pointer to a new struct memlist
+ * memlistp = memory list to which to add segment.
+ */
+static void
+memlist_add(
+	uint64_t start,
+	uint64_t len,
+	struct memlist *new,
+	struct memlist **memlistp)
+{
+	struct memlist *cur;
+	uint64_t end = start + len;
+
+	new->address = start;
+	new->size = len;
+
+	cur = *memlistp;
+
+	while (cur) {
+		if (cur->address >= end) {
+			new->next = cur;
+			*memlistp = new;
+			new->prev = cur->prev;
+			cur->prev = new;
+			return;
+		}
+		ASSERT(cur->address + cur->size <= start);
+		if (cur->next == NULL) {
+			cur->next = new;
+			new->prev = cur;
+			new->next = NULL;
+			return;
+		}
+		memlistp = &cur->next;
+		cur = cur->next;
+	}
+}
+
+void
+kobj_vmem_init(vmem_t **text_arena, vmem_t **data_arena)
+{
+	size_t tsize = e_modtext - modtext;
+	size_t dsize = e_moddata - moddata;
+
+	*text_arena = vmem_create("module_text", tsize ? modtext : NULL, tsize,
+	    1, segkmem_alloc, segkmem_free, heaptext_arena, 0, VM_SLEEP);
+	*data_arena = vmem_create("module_data", dsize ? moddata : NULL, dsize,
+	    1, segkmem_alloc, segkmem_free, heap32_arena, 0, VM_SLEEP);
+}
+
+caddr_t
+kobj_text_alloc(vmem_t *arena, size_t size)
+{
+	return (vmem_alloc(arena, size, VM_SLEEP | VM_BESTFIT));
+}
+
+/*ARGSUSED*/
+caddr_t
+kobj_texthole_alloc(caddr_t addr, size_t size)
+{
+	panic("unexpected call to kobj_texthole_alloc()");
+	/*NOTREACHED*/
+	return (0);
+}
+
+/*ARGSUSED*/
+void
+kobj_texthole_free(caddr_t addr, size_t size)
+{
+	panic("unexpected call to kobj_texthole_free()");
+}
+
+/*
+ * This is called just after configure() in startup().
+ *
+ * The ISALIST concept is a bit hopeless on Intel, because
+ * there's no guarantee of an ever-more-capable processor
+ * given that various parts of the instruction set may appear
+ * and disappear between different implementations.
+ *
+ * While it would be possible to correct it and even enhance
+ * it somewhat, the explicit hardware capability bitmask allows
+ * more flexibility.
+ *
+ * So, we just leave this alone.
+ */
+void
+setx86isalist(void)
+{
+	char *tp;
+	size_t len;
+	extern char *isa_list;
+
+#define	TBUFSIZE	1024
+
+	tp = kmem_alloc(TBUFSIZE, KM_SLEEP);
+	*tp = '\0';
+
+#if defined(__amd64)
+	(void) strcpy(tp, "amd64 ");
+#endif
+
+	switch (x86_vendor) {
+	case X86_VENDOR_Intel:
+	case X86_VENDOR_AMD:
+	case X86_VENDOR_TM:
+		if (x86_feature & X86_CMOV) {
+			/*
+			 * Pentium Pro or later
+			 */
+			(void) strcat(tp, "pentium_pro");
+			(void) strcat(tp, x86_feature & X86_MMX ?
+			    "+mmx pentium_pro " : " ");
+		}
+		/*FALLTHROUGH*/
+	case X86_VENDOR_Cyrix:
+		/*
+		 * The Cyrix 6x86 does not have any Pentium features
+		 * accessible while not at privilege level 0.
+		 */
+		if (x86_feature & X86_CPUID) {
+			(void) strcat(tp, "pentium");
+			(void) strcat(tp, x86_feature & X86_MMX ?
+			    "+mmx pentium " : " ");
+		}
+		break;
+	default:
+		break;
+	}
+	(void) strcat(tp, "i486 i386 i86");
+	len = strlen(tp) + 1;   /* account for NULL at end of string */
+	isa_list = strcpy(kmem_alloc(len, KM_SLEEP), tp);
+	kmem_free(tp, TBUFSIZE);
+
+#undef TBUFSIZE
+}
+
+
+#ifdef __amd64
+
+void *
+device_arena_alloc(size_t size, int vm_flag)
+{
+	return (vmem_alloc(device_arena, size, vm_flag));
+}
+
+void
+device_arena_free(void *vaddr, size_t size)
+{
+	vmem_free(device_arena, vaddr, size);
+}
+
+#else
+
+void *
+device_arena_alloc(size_t size, int vm_flag)
+{
+	caddr_t	vaddr;
+	uintptr_t v;
+	size_t	start;
+	size_t	end;
+
+	vaddr = vmem_alloc(heap_arena, size, vm_flag);
+	if (vaddr == NULL)
+		return (NULL);
+
+	v = (uintptr_t)vaddr;
+	ASSERT(v >= kernelbase);
+	ASSERT(v + size <= ptable_va);
+
+	start = btop(v - kernelbase);
+	end = btop(v + size - 1 - kernelbase);
+	ASSERT(start < toxic_bit_map_len);
+	ASSERT(end < toxic_bit_map_len);
+
+	while (start <= end) {
+		BT_ATOMIC_SET(toxic_bit_map, start);
+		++start;
+	}
+	return (vaddr);
+}
+
+void
+device_arena_free(void *vaddr, size_t size)
+{
+	uintptr_t v = (uintptr_t)vaddr;
+	size_t	start;
+	size_t	end;
+
+	ASSERT(v >= kernelbase);
+	ASSERT(v + size <= ptable_va);
+
+	start = btop(v - kernelbase);
+	end = btop(v + size - 1 - kernelbase);
+	ASSERT(start < toxic_bit_map_len);
+	ASSERT(end < toxic_bit_map_len);
+
+	while (start <= end) {
+		ASSERT(BT_TEST(toxic_bit_map, start) != 0);
+		BT_ATOMIC_CLEAR(toxic_bit_map, start);
+		++start;
+	}
+	vmem_free(heap_arena, vaddr, size);
+}
+
+/*
+ * returns 1st address in range that is in device arena, or NULL
+ * if len is not NULL it returns the length of the toxic range
+ */
+void *
+device_arena_contains(void *vaddr, size_t size, size_t *len)
+{
+	uintptr_t v = (uintptr_t)vaddr;
+	uintptr_t eaddr = v + size;
+	size_t start;
+	size_t end;
+
+	/*
+	 * if called very early by kmdb, just return NULL
+	 */
+	if (toxic_bit_map == NULL)
+		return (NULL);
+
+	/*
+	 * First check if we're completely outside the bitmap range.
+	 */
+	if (v >= ptable_va || eaddr < kernelbase)
+		return (NULL);
+
+	/*
+	 * Trim ends of search to look at only what the bitmap covers.
+	 */
+	if (v < kernelbase)
+		v = kernelbase;
+	start = btop(v - kernelbase);
+	end = btop(eaddr - kernelbase);
+	if (end >= toxic_bit_map_len)
+		end = toxic_bit_map_len;
+
+	if (bt_range(toxic_bit_map, &start, &end, end) == 0)
+		return (NULL);
+
+	v = kernelbase + ptob(start);
+	if (len != NULL)
+		*len = ptob(end - start);
+	return ((void *)v);
+}
+
+#endif