usr/src/uts/common/fs/zfs/spa_misc.c
author gw25295
Wed, 08 Aug 2007 15:35:58 -0700
changeset 4831 41ec732c6d9f
parent 4787 602d3f97842c
child 4944 96d96f8de974
permissions -rw-r--r--
6584470 zdb needs to initialize the bpl_lock mutex 6583739 libzpool should check for properly initialized mutexes 6548010 unbalanced mutex_init/mutex_destroy issues in zfs 6502263 ZFS needs some more FreeBSD porting love Contributed by Pawel Dawidek 6576827 multiple calls to spa_activate() can end up reinitializing all its mutexes 6576830 certain spa mutexes and condition variables need some love

/*
 * CDDL HEADER START
 *
 * The contents of this file are subject to the terms of the
 * Common Development and Distribution License (the "License").
 * You may not use this file except in compliance with the License.
 *
 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
 * or http://www.opensolaris.org/os/licensing.
 * See the License for the specific language governing permissions
 * and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL HEADER in each
 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
 * If applicable, add the following below this CDDL HEADER, with the
 * fields enclosed by brackets "[]" replaced with your own identifying
 * information: Portions Copyright [yyyy] [name of copyright owner]
 *
 * CDDL HEADER END
 */
/*
 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
 * Use is subject to license terms.
 */

#pragma ident	"%Z%%M%	%I%	%E% SMI"

#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/zio.h>
#include <sys/zio_checksum.h>
#include <sys/zio_compress.h>
#include <sys/dmu.h>
#include <sys/dmu_tx.h>
#include <sys/zap.h>
#include <sys/zil.h>
#include <sys/vdev_impl.h>
#include <sys/metaslab.h>
#include <sys/uberblock_impl.h>
#include <sys/txg.h>
#include <sys/avl.h>
#include <sys/unique.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_prop.h>
#include <sys/fs/zfs.h>
#include <sys/metaslab_impl.h>
#include "zfs_prop.h"

/*
 * SPA locking
 *
 * There are four basic locks for managing spa_t structures:
 *
 * spa_namespace_lock (global mutex)
 *
 *	This lock must be acquired to do any of the following:
 *
 *		- Lookup a spa_t by name
 *		- Add or remove a spa_t from the namespace
 *		- Increase spa_refcount from non-zero
 *		- Check if spa_refcount is zero
 *		- Rename a spa_t
 *		- add/remove/attach/detach devices
 *		- Held for the duration of create/destroy/import/export
 *
 *	It does not need to handle recursion.  A create or destroy may
 *	reference objects (files or zvols) in other pools, but by
 *	definition they must have an existing reference, and will never need
 *	to lookup a spa_t by name.
 *
 * spa_refcount (per-spa refcount_t protected by mutex)
 *
 *	This reference count keep track of any active users of the spa_t.  The
 *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
 *	the refcount is never really 'zero' - opening a pool implicitly keeps
 *	some references in the DMU.  Internally we check against SPA_MINREF, but
 *	present the image of a zero/non-zero value to consumers.
 *
 * spa_config_lock (per-spa read-priority rwlock)
 *
 *	This protects the spa_t from config changes, and must be held in
 *	the following circumstances:
 *
 *		- RW_READER to perform I/O to the spa
 *		- RW_WRITER to change the vdev config
 *
 * spa_config_cache_lock (per-spa mutex)
 *
 *	This mutex prevents the spa_config nvlist from being updated.  No
 *      other locks are required to obtain this lock, although implicitly you
 *      must have the namespace lock or non-zero refcount to have any kind
 *      of spa_t pointer at all.
 *
 * The locking order is fairly straightforward:
 *
 *		spa_namespace_lock	->	spa_refcount
 *
 *	The namespace lock must be acquired to increase the refcount from 0
 *	or to check if it is zero.
 *
 *		spa_refcount		->	spa_config_lock
 *
 *	There must be at least one valid reference on the spa_t to acquire
 *	the config lock.
 *
 *		spa_namespace_lock	->	spa_config_lock
 *
 *	The namespace lock must always be taken before the config lock.
 *
 *
 * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and
 * are globally visible.
 *
 * The namespace is manipulated using the following functions, all which require
 * the spa_namespace_lock to be held.
 *
 *	spa_lookup()		Lookup a spa_t by name.
 *
 *	spa_add()		Create a new spa_t in the namespace.
 *
 *	spa_remove()		Remove a spa_t from the namespace.  This also
 *				frees up any memory associated with the spa_t.
 *
 *	spa_next()		Returns the next spa_t in the system, or the
 *				first if NULL is passed.
 *
 *	spa_evict_all()		Shutdown and remove all spa_t structures in
 *				the system.
 *
 *	spa_guid_exists()	Determine whether a pool/device guid exists.
 *
 * The spa_refcount is manipulated using the following functions:
 *
 *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
 *				called with spa_namespace_lock held if the
 *				refcount is currently zero.
 *
 *	spa_close()		Remove a reference from the spa_t.  This will
 *				not free the spa_t or remove it from the
 *				namespace.  No locking is required.
 *
 *	spa_refcount_zero()	Returns true if the refcount is currently
 *				zero.  Must be called with spa_namespace_lock
 *				held.
 *
 * The spa_config_lock is manipulated using the following functions:
 *
 *	spa_config_enter()	Acquire the config lock as RW_READER or
 *				RW_WRITER.  At least one reference on the spa_t
 *				must exist.
 *
 *	spa_config_exit()	Release the config lock.
 *
 *	spa_config_held()	Returns true if the config lock is currently
 *				held in the given state.
 *
 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
 *
 *	spa_vdev_enter()	Acquire the namespace lock and the config lock
 *				for writing.
 *
 *	spa_vdev_exit()		Release the config lock, wait for all I/O
 *				to complete, sync the updated configs to the
 *				cache, and release the namespace lock.
 *
 * The spa_name() function also requires either the spa_namespace_lock
 * or the spa_config_lock, as both are needed to do a rename.  spa_rename() is
 * also implemented within this file since is requires manipulation of the
 * namespace.
 */

static avl_tree_t spa_namespace_avl;
kmutex_t spa_namespace_lock;
static kcondvar_t spa_namespace_cv;
static int spa_active_count;
int spa_max_replication_override = SPA_DVAS_PER_BP;

static kmutex_t spa_spare_lock;
static avl_tree_t spa_spare_avl;

kmem_cache_t *spa_buffer_pool;
int spa_mode;

#ifdef ZFS_DEBUG
/* Everything except dprintf is on by default in debug builds */
int zfs_flags = ~ZFS_DEBUG_DPRINTF;
#else
int zfs_flags = 0;
#endif

/*
 * zfs_recover can be set to nonzero to attempt to recover from
 * otherwise-fatal errors, typically caused by on-disk corruption.  When
 * set, calls to zfs_panic_recover() will turn into warning messages.
 */
int zfs_recover = 0;

#define	SPA_MINREF	5	/* spa_refcnt for an open-but-idle pool */

/*
 * ==========================================================================
 * SPA namespace functions
 * ==========================================================================
 */

/*
 * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
 * Returns NULL if no matching spa_t is found.
 */
spa_t *
spa_lookup(const char *name)
{
	spa_t search, *spa;
	avl_index_t where;
	char c;
	char *cp;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	/*
	 * If it's a full dataset name, figure out the pool name and
	 * just use that.
	 */
	cp = strpbrk(name, "/@");
	if (cp) {
		c = *cp;
		*cp = '\0';
	}

	search.spa_name = (char *)name;
	spa = avl_find(&spa_namespace_avl, &search, &where);

	if (cp)
		*cp = c;

	return (spa);
}

/*
 * Create an uninitialized spa_t with the given name.  Requires
 * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
 * exist by calling spa_lookup() first.
 */
spa_t *
spa_add(const char *name, const char *altroot)
{
	spa_t *spa;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);

	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);

	mutex_init(&spa->spa_uberblock_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);

	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&spa->spa_scrub_cv, NULL, CV_DEFAULT, NULL);
	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);

	spa->spa_name = spa_strdup(name);
	spa->spa_state = POOL_STATE_UNINITIALIZED;
	spa->spa_freeze_txg = UINT64_MAX;
	spa->spa_final_txg = UINT64_MAX;

	refcount_create(&spa->spa_refcount);
	rprw_init(&spa->spa_config_lock);

	avl_add(&spa_namespace_avl, spa);

	/*
	 * Set the alternate root, if there is one.
	 */
	if (altroot) {
		spa->spa_root = spa_strdup(altroot);
		spa_active_count++;
	}

	return (spa);
}

/*
 * Removes a spa_t from the namespace, freeing up any memory used.  Requires
 * spa_namespace_lock.  This is called only after the spa_t has been closed and
 * deactivated.
 */
void
spa_remove(spa_t *spa)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));
	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
	ASSERT(spa->spa_scrub_thread == NULL);

	avl_remove(&spa_namespace_avl, spa);
	cv_broadcast(&spa_namespace_cv);

	if (spa->spa_root) {
		spa_strfree(spa->spa_root);
		spa_active_count--;
	}

	if (spa->spa_name)
		spa_strfree(spa->spa_name);

	spa_config_set(spa, NULL);

	refcount_destroy(&spa->spa_refcount);

	rprw_destroy(&spa->spa_config_lock);

	rw_destroy(&spa->spa_traverse_lock);

	cv_destroy(&spa->spa_async_cv);
	cv_destroy(&spa->spa_scrub_cv);
	cv_destroy(&spa->spa_scrub_io_cv);

	mutex_destroy(&spa->spa_uberblock_lock);
	mutex_destroy(&spa->spa_async_lock);
	mutex_destroy(&spa->spa_config_cache_lock);
	mutex_destroy(&spa->spa_scrub_lock);
	mutex_destroy(&spa->spa_errlog_lock);
	mutex_destroy(&spa->spa_errlist_lock);
	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
	mutex_destroy(&spa->spa_history_lock);
	mutex_destroy(&spa->spa_props_lock);

	kmem_free(spa, sizeof (spa_t));
}

/*
 * Given a pool, return the next pool in the namespace, or NULL if there is
 * none.  If 'prev' is NULL, return the first pool.
 */
spa_t *
spa_next(spa_t *prev)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	if (prev)
		return (AVL_NEXT(&spa_namespace_avl, prev));
	else
		return (avl_first(&spa_namespace_avl));
}

/*
 * ==========================================================================
 * SPA refcount functions
 * ==========================================================================
 */

/*
 * Add a reference to the given spa_t.  Must have at least one reference, or
 * have the namespace lock held.
 */
void
spa_open_ref(spa_t *spa, void *tag)
{
	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
	    MUTEX_HELD(&spa_namespace_lock));

	(void) refcount_add(&spa->spa_refcount, tag);
}

/*
 * Remove a reference to the given spa_t.  Must have at least one reference, or
 * have the namespace lock held.
 */
void
spa_close(spa_t *spa, void *tag)
{
	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
	    MUTEX_HELD(&spa_namespace_lock));

	(void) refcount_remove(&spa->spa_refcount, tag);
}

/*
 * Check to see if the spa refcount is zero.  Must be called with
 * spa_namespace_lock held.  We really compare against SPA_MINREF, which is the
 * number of references acquired when opening a pool
 */
boolean_t
spa_refcount_zero(spa_t *spa)
{
	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	return (refcount_count(&spa->spa_refcount) == SPA_MINREF);
}

/*
 * ==========================================================================
 * SPA spare tracking
 * ==========================================================================
 */

/*
 * Spares are tracked globally due to the following constraints:
 *
 * 	- A spare may be part of multiple pools.
 * 	- A spare may be added to a pool even if it's actively in use within
 *	  another pool.
 * 	- A spare in use in any pool can only be the source of a replacement if
 *	  the target is a spare in the same pool.
 *
 * We keep track of all spares on the system through the use of a reference
 * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
 * spare, then we bump the reference count in the AVL tree.  In addition, we set
 * the 'vdev_isspare' member to indicate that the device is a spare (active or
 * inactive).  When a spare is made active (used to replace a device in the
 * pool), we also keep track of which pool its been made a part of.
 *
 * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
 * called under the spa_namespace lock as part of vdev reconfiguration.  The
 * separate spare lock exists for the status query path, which does not need to
 * be completely consistent with respect to other vdev configuration changes.
 */

typedef struct spa_spare {
	uint64_t	spare_guid;
	uint64_t	spare_pool;
	avl_node_t	spare_avl;
	int		spare_count;
} spa_spare_t;

static int
spa_spare_compare(const void *a, const void *b)
{
	const spa_spare_t *sa = a;
	const spa_spare_t *sb = b;

	if (sa->spare_guid < sb->spare_guid)
		return (-1);
	else if (sa->spare_guid > sb->spare_guid)
		return (1);
	else
		return (0);
}

void
spa_spare_add(vdev_t *vd)
{
	avl_index_t where;
	spa_spare_t search;
	spa_spare_t *spare;

	mutex_enter(&spa_spare_lock);
	ASSERT(!vd->vdev_isspare);

	search.spare_guid = vd->vdev_guid;
	if ((spare = avl_find(&spa_spare_avl, &search, &where)) != NULL) {
		spare->spare_count++;
	} else {
		spare = kmem_zalloc(sizeof (spa_spare_t), KM_SLEEP);
		spare->spare_guid = vd->vdev_guid;
		spare->spare_count = 1;
		avl_insert(&spa_spare_avl, spare, where);
	}
	vd->vdev_isspare = B_TRUE;

	mutex_exit(&spa_spare_lock);
}

void
spa_spare_remove(vdev_t *vd)
{
	spa_spare_t search;
	spa_spare_t *spare;
	avl_index_t where;

	mutex_enter(&spa_spare_lock);

	search.spare_guid = vd->vdev_guid;
	spare = avl_find(&spa_spare_avl, &search, &where);

	ASSERT(vd->vdev_isspare);
	ASSERT(spare != NULL);

	if (--spare->spare_count == 0) {
		avl_remove(&spa_spare_avl, spare);
		kmem_free(spare, sizeof (spa_spare_t));
	} else if (spare->spare_pool == spa_guid(vd->vdev_spa)) {
		spare->spare_pool = 0ULL;
	}

	vd->vdev_isspare = B_FALSE;
	mutex_exit(&spa_spare_lock);
}

boolean_t
spa_spare_exists(uint64_t guid, uint64_t *pool)
{
	spa_spare_t search, *found;
	avl_index_t where;

	mutex_enter(&spa_spare_lock);

	search.spare_guid = guid;
	found = avl_find(&spa_spare_avl, &search, &where);

	if (pool) {
		if (found)
			*pool = found->spare_pool;
		else
			*pool = 0ULL;
	}

	mutex_exit(&spa_spare_lock);

	return (found != NULL);
}

void
spa_spare_activate(vdev_t *vd)
{
	spa_spare_t search, *found;
	avl_index_t where;

	mutex_enter(&spa_spare_lock);
	ASSERT(vd->vdev_isspare);

	search.spare_guid = vd->vdev_guid;
	found = avl_find(&spa_spare_avl, &search, &where);
	ASSERT(found != NULL);
	ASSERT(found->spare_pool == 0ULL);

	found->spare_pool = spa_guid(vd->vdev_spa);
	mutex_exit(&spa_spare_lock);
}

/*
 * ==========================================================================
 * SPA config locking
 * ==========================================================================
 */
void
spa_config_enter(spa_t *spa, krw_t rw, void *tag)
{
	rprw_enter(&spa->spa_config_lock, rw, tag);
}

void
spa_config_exit(spa_t *spa, void *tag)
{
	rprw_exit(&spa->spa_config_lock, tag);
}

boolean_t
spa_config_held(spa_t *spa, krw_t rw)
{
	return (rprw_held(&spa->spa_config_lock, rw));
}

/*
 * ==========================================================================
 * SPA vdev locking
 * ==========================================================================
 */

/*
 * Lock the given spa_t for the purpose of adding or removing a vdev.
 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
 * It returns the next transaction group for the spa_t.
 */
uint64_t
spa_vdev_enter(spa_t *spa)
{
	mutex_enter(&spa_namespace_lock);

	/*
	 * Suspend scrub activity while we mess with the config.  We must do
	 * this after acquiring the namespace lock to avoid a 3-way deadlock
	 * with spa_scrub_stop() and the scrub thread.
	 */
	spa_scrub_suspend(spa);

	spa_config_enter(spa, RW_WRITER, spa);

	return (spa_last_synced_txg(spa) + 1);
}

/*
 * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
 * locking of spa_vdev_enter(), we also want make sure the transactions have
 * synced to disk, and then update the global configuration cache with the new
 * information.
 */
int
spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
{
	int config_changed = B_FALSE;

	ASSERT(txg > spa_last_synced_txg(spa));

	/*
	 * Reassess the DTLs.
	 */
	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);

	/*
	 * If the config changed, notify the scrub thread that it must restart.
	 */
	if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) {
		config_changed = B_TRUE;
		spa_scrub_restart(spa, txg);
	}

	spa_config_exit(spa, spa);

	/*
	 * Allow scrubbing to resume.
	 */
	spa_scrub_resume(spa);

	/*
	 * Note: this txg_wait_synced() is important because it ensures
	 * that there won't be more than one config change per txg.
	 * This allows us to use the txg as the generation number.
	 */
	if (error == 0)
		txg_wait_synced(spa->spa_dsl_pool, txg);

	if (vd != NULL) {
		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
		vdev_free(vd);
	}

	/*
	 * If the config changed, update the config cache.
	 */
	if (config_changed)
		spa_config_sync();

	mutex_exit(&spa_namespace_lock);

	return (error);
}

/*
 * ==========================================================================
 * Miscellaneous functions
 * ==========================================================================
 */

/*
 * Rename a spa_t.
 */
int
spa_rename(const char *name, const char *newname)
{
	spa_t *spa;
	int err;

	/*
	 * Lookup the spa_t and grab the config lock for writing.  We need to
	 * actually open the pool so that we can sync out the necessary labels.
	 * It's OK to call spa_open() with the namespace lock held because we
	 * allow recursive calls for other reasons.
	 */
	mutex_enter(&spa_namespace_lock);
	if ((err = spa_open(name, &spa, FTAG)) != 0) {
		mutex_exit(&spa_namespace_lock);
		return (err);
	}

	spa_config_enter(spa, RW_WRITER, FTAG);

	avl_remove(&spa_namespace_avl, spa);
	spa_strfree(spa->spa_name);
	spa->spa_name = spa_strdup(newname);
	avl_add(&spa_namespace_avl, spa);

	/*
	 * Sync all labels to disk with the new names by marking the root vdev
	 * dirty and waiting for it to sync.  It will pick up the new pool name
	 * during the sync.
	 */
	vdev_config_dirty(spa->spa_root_vdev);

	spa_config_exit(spa, FTAG);

	txg_wait_synced(spa->spa_dsl_pool, 0);

	/*
	 * Sync the updated config cache.
	 */
	spa_config_sync();

	spa_close(spa, FTAG);

	mutex_exit(&spa_namespace_lock);

	return (0);
}


/*
 * Determine whether a pool with given pool_guid exists.  If device_guid is
 * non-zero, determine whether the pool exists *and* contains a device with the
 * specified device_guid.
 */
boolean_t
spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
{
	spa_t *spa;
	avl_tree_t *t = &spa_namespace_avl;

	ASSERT(MUTEX_HELD(&spa_namespace_lock));

	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
			continue;
		if (spa->spa_root_vdev == NULL)
			continue;
		if (spa_guid(spa) == pool_guid) {
			if (device_guid == 0)
				break;

			if (vdev_lookup_by_guid(spa->spa_root_vdev,
			    device_guid) != NULL)
				break;

			/*
			 * Check any devices we may be in the process of adding.
			 */
			if (spa->spa_pending_vdev) {
				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
				    device_guid) != NULL)
					break;
			}
		}
	}

	return (spa != NULL);
}

char *
spa_strdup(const char *s)
{
	size_t len;
	char *new;

	len = strlen(s);
	new = kmem_alloc(len + 1, KM_SLEEP);
	bcopy(s, new, len);
	new[len] = '\0';

	return (new);
}

void
spa_strfree(char *s)
{
	kmem_free(s, strlen(s) + 1);
}

uint64_t
spa_get_random(uint64_t range)
{
	uint64_t r;

	ASSERT(range != 0);

	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));

	return (r % range);
}

void
sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
{
	int d;

	if (bp == NULL) {
		(void) snprintf(buf, len, "<NULL>");
		return;
	}

	if (BP_IS_HOLE(bp)) {
		(void) snprintf(buf, len, "<hole>");
		return;
	}

	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
	    (u_longlong_t)BP_GET_LEVEL(bp),
	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
	    (u_longlong_t)BP_GET_LSIZE(bp),
	    (u_longlong_t)BP_GET_PSIZE(bp));

	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
		const dva_t *dva = &bp->blk_dva[d];
		(void) snprintf(buf + strlen(buf), len - strlen(buf),
		    "DVA[%d]=<%llu:%llx:%llx> ", d,
		    (u_longlong_t)DVA_GET_VDEV(dva),
		    (u_longlong_t)DVA_GET_OFFSET(dva),
		    (u_longlong_t)DVA_GET_ASIZE(dva));
	}

	(void) snprintf(buf + strlen(buf), len - strlen(buf),
	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
	    BP_IS_GANG(bp) ? "gang" : "contiguous",
	    (u_longlong_t)bp->blk_birth,
	    (u_longlong_t)bp->blk_fill,
	    (u_longlong_t)bp->blk_cksum.zc_word[0],
	    (u_longlong_t)bp->blk_cksum.zc_word[1],
	    (u_longlong_t)bp->blk_cksum.zc_word[2],
	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
}

void
spa_freeze(spa_t *spa)
{
	uint64_t freeze_txg = 0;

	spa_config_enter(spa, RW_WRITER, FTAG);
	if (spa->spa_freeze_txg == UINT64_MAX) {
		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
		spa->spa_freeze_txg = freeze_txg;
	}
	spa_config_exit(spa, FTAG);
	if (freeze_txg != 0)
		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
}

void
zfs_panic_recover(const char *fmt, ...)
{
	va_list adx;

	va_start(adx, fmt);
	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
	va_end(adx);
}

/*
 * ==========================================================================
 * Accessor functions
 * ==========================================================================
 */

krwlock_t *
spa_traverse_rwlock(spa_t *spa)
{
	return (&spa->spa_traverse_lock);
}

int
spa_traverse_wanted(spa_t *spa)
{
	return (spa->spa_traverse_wanted);
}

dsl_pool_t *
spa_get_dsl(spa_t *spa)
{
	return (spa->spa_dsl_pool);
}

blkptr_t *
spa_get_rootblkptr(spa_t *spa)
{
	return (&spa->spa_ubsync.ub_rootbp);
}

void
spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
{
	spa->spa_uberblock.ub_rootbp = *bp;
}

void
spa_altroot(spa_t *spa, char *buf, size_t buflen)
{
	if (spa->spa_root == NULL)
		buf[0] = '\0';
	else
		(void) strncpy(buf, spa->spa_root, buflen);
}

int
spa_sync_pass(spa_t *spa)
{
	return (spa->spa_sync_pass);
}

char *
spa_name(spa_t *spa)
{
	/*
	 * Accessing the name requires holding either the namespace lock or the
	 * config lock, both of which are required to do a rename.
	 */
	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
	    spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER));

	return (spa->spa_name);
}

uint64_t
spa_guid(spa_t *spa)
{
	/*
	 * If we fail to parse the config during spa_load(), we can go through
	 * the error path (which posts an ereport) and end up here with no root
	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
	 * this case.
	 */
	if (spa->spa_root_vdev != NULL)
		return (spa->spa_root_vdev->vdev_guid);
	else
		return (spa->spa_load_guid);
}

uint64_t
spa_last_synced_txg(spa_t *spa)
{
	return (spa->spa_ubsync.ub_txg);
}

uint64_t
spa_first_txg(spa_t *spa)
{
	return (spa->spa_first_txg);
}

int
spa_state(spa_t *spa)
{
	return (spa->spa_state);
}

uint64_t
spa_freeze_txg(spa_t *spa)
{
	return (spa->spa_freeze_txg);
}

/*
 * Return how much space is allocated in the pool (ie. sum of all asize)
 */
uint64_t
spa_get_alloc(spa_t *spa)
{
	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
}

/*
 * Return how much (raid-z inflated) space there is in the pool.
 */
uint64_t
spa_get_space(spa_t *spa)
{
	return (spa->spa_root_vdev->vdev_stat.vs_space);
}

/*
 * Return the amount of raid-z-deflated space in the pool.
 */
uint64_t
spa_get_dspace(spa_t *spa)
{
	if (spa->spa_deflate)
		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
	else
		return (spa->spa_root_vdev->vdev_stat.vs_space);
}

/* ARGSUSED */
uint64_t
spa_get_asize(spa_t *spa, uint64_t lsize)
{
	/*
	 * For now, the worst case is 512-byte RAID-Z blocks, in which
	 * case the space requirement is exactly 2x; so just assume that.
	 * Add to this the fact that we can have up to 3 DVAs per bp, and
	 * we have to multiply by a total of 6x.
	 */
	return (lsize * 6);
}

uint64_t
spa_version(spa_t *spa)
{
	return (spa->spa_ubsync.ub_version);
}

int
spa_max_replication(spa_t *spa)
{
	/*
	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
	 * handle BPs with more than one DVA allocated.  Set our max
	 * replication level accordingly.
	 */
	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
		return (1);
	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
}

uint64_t
bp_get_dasize(spa_t *spa, const blkptr_t *bp)
{
	int sz = 0, i;

	if (!spa->spa_deflate)
		return (BP_GET_ASIZE(bp));

	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
		vdev_t *vd =
		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
		sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> SPA_MINBLOCKSHIFT) *
		    vd->vdev_deflate_ratio;
	}
	return (sz);
}

/*
 * ==========================================================================
 * Initialization and Termination
 * ==========================================================================
 */

static int
spa_name_compare(const void *a1, const void *a2)
{
	const spa_t *s1 = a1;
	const spa_t *s2 = a2;
	int s;

	s = strcmp(s1->spa_name, s2->spa_name);
	if (s > 0)
		return (1);
	if (s < 0)
		return (-1);
	return (0);
}

int
spa_busy(void)
{
	return (spa_active_count);
}

void
spa_init(int mode)
{
	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);

	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
	    offsetof(spa_t, spa_avl));

	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_spare_t),
	    offsetof(spa_spare_t, spare_avl));

	spa_mode = mode;

	refcount_init();
	unique_init();
	zio_init();
	dmu_init();
	zil_init();
	zfs_prop_init();
	spa_config_load();
}

void
spa_fini(void)
{
	spa_evict_all();

	zil_fini();
	dmu_fini();
	zio_fini();
	unique_fini();
	refcount_fini();

	avl_destroy(&spa_namespace_avl);
	avl_destroy(&spa_spare_avl);

	cv_destroy(&spa_namespace_cv);
	mutex_destroy(&spa_namespace_lock);
	mutex_destroy(&spa_spare_lock);
}

/*
 * Return whether this pool has slogs. No locking needed.
 * It's not a problem if the wrong answer is returned as it's only for
 * performance and not correctness
 */
boolean_t
spa_has_slogs(spa_t *spa)
{
	return (spa->spa_log_class->mc_rotor != NULL);
}