usr/src/uts/common/inet/tcp/tcp_fusion.c
changeset 741 40027a3621ac
child 2024 444fb85b9dd5
equal deleted inserted replaced
740:70e4862c9a1a 741:40027a3621ac
       
     1 /*
       
     2  * CDDL HEADER START
       
     3  *
       
     4  * The contents of this file are subject to the terms of the
       
     5  * Common Development and Distribution License, Version 1.0 only
       
     6  * (the "License").  You may not use this file except in compliance
       
     7  * with the License.
       
     8  *
       
     9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
       
    10  * or http://www.opensolaris.org/os/licensing.
       
    11  * See the License for the specific language governing permissions
       
    12  * and limitations under the License.
       
    13  *
       
    14  * When distributing Covered Code, include this CDDL HEADER in each
       
    15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
       
    16  * If applicable, add the following below this CDDL HEADER, with the
       
    17  * fields enclosed by brackets "[]" replaced with your own identifying
       
    18  * information: Portions Copyright [yyyy] [name of copyright owner]
       
    19  *
       
    20  * CDDL HEADER END
       
    21  */
       
    22 /*
       
    23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
       
    24  * Use is subject to license terms.
       
    25  */
       
    26 
       
    27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
       
    28 
       
    29 #include <sys/types.h>
       
    30 #include <sys/stream.h>
       
    31 #include <sys/strsun.h>
       
    32 #include <sys/strsubr.h>
       
    33 #include <sys/debug.h>
       
    34 #include <sys/cmn_err.h>
       
    35 #include <sys/tihdr.h>
       
    36 
       
    37 #include <inet/common.h>
       
    38 #include <inet/ip.h>
       
    39 #include <inet/ip_impl.h>
       
    40 #include <inet/tcp.h>
       
    41 #include <inet/tcp_impl.h>
       
    42 #include <inet/ipsec_impl.h>
       
    43 #include <inet/ipclassifier.h>
       
    44 #include <inet/ipp_common.h>
       
    45 
       
    46 /*
       
    47  * This file implements TCP fusion - a protocol-less data path for TCP
       
    48  * loopback connections.  The fusion of two local TCP endpoints occurs
       
    49  * at connection establishment time.  Various conditions (see details
       
    50  * in tcp_fuse()) need to be met for fusion to be successful.  If it
       
    51  * fails, we fall back to the regular TCP data path; if it succeeds,
       
    52  * both endpoints proceed to use tcp_fuse_output() as the transmit path.
       
    53  * tcp_fuse_output() enqueues application data directly onto the peer's
       
    54  * receive queue; no protocol processing is involved.  After enqueueing
       
    55  * the data, the sender can either push (putnext) data up the receiver's
       
    56  * read queue; or the sender can simply return and let the receiver
       
    57  * retrieve the enqueued data via the synchronous streams entry point
       
    58  * tcp_fuse_rrw().  The latter path is taken if synchronous streams is
       
    59  * enabled (the default).  It is disabled if sockfs no longer resides
       
    60  * directly on top of tcp module due to a module insertion or removal.
       
    61  * It also needs to be temporarily disabled when sending urgent data
       
    62  * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
       
    63  * by strsock_proto() hook.
       
    64  *
       
    65  * Sychronization is handled by squeue and the mutex tcp_fuse_lock.
       
    66  * One of the requirements for fusion to succeed is that both endpoints
       
    67  * need to be using the same squeue.  This ensures that neither side
       
    68  * can disappear while the other side is still sending data.  By itself,
       
    69  * squeue is not sufficient for guaranteeing safety when synchronous
       
    70  * streams is enabled.  The reason is that tcp_fuse_rrw() doesn't enter
       
    71  * the squeue and its access to tcp_rcv_list and other fusion-related
       
    72  * fields needs to be sychronized with the sender.  tcp_fuse_lock is
       
    73  * used for this purpose.  When there is urgent data, the sender needs
       
    74  * to push the data up the receiver's streams read queue.  In order to
       
    75  * avoid holding the tcp_fuse_lock across putnext(), the sender sets
       
    76  * the peer tcp's tcp_fuse_syncstr_stopped bit and releases tcp_fuse_lock
       
    77  * (see macro TCP_FUSE_SYNCSTR_STOP()).  If tcp_fuse_rrw() enters after
       
    78  * this point, it will see that synchronous streams is temporarily
       
    79  * stopped and it will immediately return EBUSY without accessing the
       
    80  * tcp_rcv_list or other fields protected by the tcp_fuse_lock.  This
       
    81  * will result in strget() calling getq_noenab() to dequeue data from
       
    82  * the stream head instead.  After the sender has finished pushing up
       
    83  * all urgent data, it will clear the tcp_fuse_syncstr_stopped bit using
       
    84  * TCP_FUSE_SYNCSTR_RESUME and the receiver may then resume using
       
    85  * tcp_fuse_rrw() to retrieve data from tcp_rcv_list.
       
    86  *
       
    87  * The following note applies only to the synchronous streams mode.
       
    88  *
       
    89  * Flow control is done by checking the size of receive buffer and
       
    90  * the number of data blocks, both set to different limits.  This is
       
    91  * different than regular streams flow control where cumulative size
       
    92  * check dominates block count check -- streams queue high water mark
       
    93  * typically represents bytes.  Each enqueue triggers notifications
       
    94  * to the receiving process; a build up of data blocks indicates a
       
    95  * slow receiver and the sender should be blocked or informed at the
       
    96  * earliest moment instead of further wasting system resources.  In
       
    97  * effect, this is equivalent to limiting the number of outstanding
       
    98  * segments in flight.
       
    99  */
       
   100 
       
   101 /*
       
   102  * Macros that determine whether or not IP processing is needed for TCP.
       
   103  */
       
   104 #define	TCP_IPOPT_POLICY_V4(tcp)					\
       
   105 	((tcp)->tcp_ipversion == IPV4_VERSION &&			\
       
   106 	((tcp)->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH ||		\
       
   107 	CONN_OUTBOUND_POLICY_PRESENT((tcp)->tcp_connp) ||		\
       
   108 	CONN_INBOUND_POLICY_PRESENT((tcp)->tcp_connp)))
       
   109 
       
   110 #define	TCP_IPOPT_POLICY_V6(tcp)					\
       
   111 	((tcp)->tcp_ipversion == IPV6_VERSION &&			\
       
   112 	((tcp)->tcp_ip_hdr_len != IPV6_HDR_LEN ||			\
       
   113 	CONN_OUTBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp) ||		\
       
   114 	CONN_INBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp)))
       
   115 
       
   116 #define	TCP_LOOPBACK_IP(tcp)						\
       
   117 	(TCP_IPOPT_POLICY_V4(tcp) || TCP_IPOPT_POLICY_V6(tcp) ||	\
       
   118 	!CONN_IS_MD_FASTPATH((tcp)->tcp_connp))
       
   119 
       
   120 /*
       
   121  * Setting this to false means we disable fusion altogether and
       
   122  * loopback connections would go through the protocol paths.
       
   123  */
       
   124 boolean_t do_tcp_fusion = B_TRUE;
       
   125 
       
   126 /*
       
   127  * Enabling this flag allows sockfs to retrieve data directly
       
   128  * from a fused tcp endpoint using synchronous streams interface.
       
   129  */
       
   130 boolean_t do_tcp_direct_sockfs = B_TRUE;
       
   131 
       
   132 /*
       
   133  * This is the minimum amount of outstanding writes allowed on
       
   134  * a synchronous streams-enabled receiving endpoint before the
       
   135  * sender gets flow-controlled.  Setting this value to 0 means
       
   136  * that the data block limit is equivalent to the byte count
       
   137  * limit, which essentially disables the check.
       
   138  */
       
   139 #define	TCP_FUSION_RCV_UNREAD_MIN	8
       
   140 uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
       
   141 
       
   142 static void	tcp_fuse_syncstr_enable(tcp_t *);
       
   143 static void	tcp_fuse_syncstr_disable(tcp_t *);
       
   144 static void	strrput_sig(queue_t *, boolean_t);
       
   145 
       
   146 /*
       
   147  * This routine gets called by the eager tcp upon changing state from
       
   148  * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
       
   149  * and the active connect tcp such that the regular tcp processings
       
   150  * may be bypassed under allowable circumstances.  Because the fusion
       
   151  * requires both endpoints to be in the same squeue, it does not work
       
   152  * for simultaneous active connects because there is no easy way to
       
   153  * switch from one squeue to another once the connection is created.
       
   154  * This is different from the eager tcp case where we assign it the
       
   155  * same squeue as the one given to the active connect tcp during open.
       
   156  */
       
   157 void
       
   158 tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
       
   159 {
       
   160 	conn_t *peer_connp, *connp = tcp->tcp_connp;
       
   161 	tcp_t *peer_tcp;
       
   162 
       
   163 	ASSERT(!tcp->tcp_fused);
       
   164 	ASSERT(tcp->tcp_loopback);
       
   165 	ASSERT(tcp->tcp_loopback_peer == NULL);
       
   166 	/*
       
   167 	 * We need to inherit q_hiwat of the listener tcp, but we can't
       
   168 	 * really use tcp_listener since we get here after sending up
       
   169 	 * T_CONN_IND and tcp_wput_accept() may be called independently,
       
   170 	 * at which point tcp_listener is cleared; this is why we use
       
   171 	 * tcp_saved_listener.  The listener itself is guaranteed to be
       
   172 	 * around until tcp_accept_finish() is called on this eager --
       
   173 	 * this won't happen until we're done since we're inside the
       
   174 	 * eager's perimeter now.
       
   175 	 */
       
   176 	ASSERT(tcp->tcp_saved_listener != NULL);
       
   177 
       
   178 	/*
       
   179 	 * Lookup peer endpoint; search for the remote endpoint having
       
   180 	 * the reversed address-port quadruplet in ESTABLISHED state,
       
   181 	 * which is guaranteed to be unique in the system.  Zone check
       
   182 	 * is applied accordingly for loopback address, but not for
       
   183 	 * local address since we want fusion to happen across Zones.
       
   184 	 */
       
   185 	if (tcp->tcp_ipversion == IPV4_VERSION) {
       
   186 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
       
   187 		    (ipha_t *)iphdr, tcph);
       
   188 	} else {
       
   189 		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
       
   190 		    (ip6_t *)iphdr, tcph);
       
   191 	}
       
   192 
       
   193 	/*
       
   194 	 * We can only proceed if peer exists, resides in the same squeue
       
   195 	 * as our conn and is not raw-socket.  The squeue assignment of
       
   196 	 * this eager tcp was done earlier at the time of SYN processing
       
   197 	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
       
   198 	 * doesn't guarantee a safe condition to fuse, hence we perform
       
   199 	 * additional tests below.
       
   200 	 */
       
   201 	ASSERT(peer_connp == NULL || peer_connp != connp);
       
   202 	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
       
   203 	    !IPCL_IS_TCP(peer_connp)) {
       
   204 		if (peer_connp != NULL) {
       
   205 			TCP_STAT(tcp_fusion_unqualified);
       
   206 			CONN_DEC_REF(peer_connp);
       
   207 		}
       
   208 		return;
       
   209 	}
       
   210 	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
       
   211 
       
   212 	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
       
   213 	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
       
   214 	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
       
   215 
       
   216 	/*
       
   217 	 * Fuse the endpoints; we perform further checks against both
       
   218 	 * tcp endpoints to ensure that a fusion is allowed to happen.
       
   219 	 * In particular we bail out for non-simple TCP/IP or if IPsec/
       
   220 	 * IPQoS policy exists.
       
   221 	 */
       
   222 	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
       
   223 	    !TCP_LOOPBACK_IP(tcp) && !TCP_LOOPBACK_IP(peer_tcp) &&
       
   224 	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) {
       
   225 		mblk_t *mp;
       
   226 		struct stroptions *stropt;
       
   227 		queue_t *peer_rq = peer_tcp->tcp_rq;
       
   228 
       
   229 		ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
       
   230 		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
       
   231 		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
       
   232 
       
   233 		/*
       
   234 		 * We need to drain data on both endpoints during unfuse.
       
   235 		 * If we need to send up SIGURG at the time of draining,
       
   236 		 * we want to be sure that an mblk is readily available.
       
   237 		 * This is why we pre-allocate the M_PCSIG mblks for both
       
   238 		 * endpoints which will only be used during/after unfuse.
       
   239 		 */
       
   240 		if ((mp = allocb(1, BPRI_HI)) == NULL)
       
   241 			goto failed;
       
   242 
       
   243 		tcp->tcp_fused_sigurg_mp = mp;
       
   244 
       
   245 		if ((mp = allocb(1, BPRI_HI)) == NULL)
       
   246 			goto failed;
       
   247 
       
   248 		peer_tcp->tcp_fused_sigurg_mp = mp;
       
   249 
       
   250 		/* Allocate M_SETOPTS mblk */
       
   251 		if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL)
       
   252 			goto failed;
       
   253 
       
   254 		/* Fuse both endpoints */
       
   255 		peer_tcp->tcp_loopback_peer = tcp;
       
   256 		tcp->tcp_loopback_peer = peer_tcp;
       
   257 		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
       
   258 
       
   259 		/*
       
   260 		 * We never use regular tcp paths in fusion and should
       
   261 		 * therefore clear tcp_unsent on both endpoints.  Having
       
   262 		 * them set to non-zero values means asking for trouble
       
   263 		 * especially after unfuse, where we may end up sending
       
   264 		 * through regular tcp paths which expect xmit_list and
       
   265 		 * friends to be correctly setup.
       
   266 		 */
       
   267 		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
       
   268 
       
   269 		tcp_timers_stop(tcp);
       
   270 		tcp_timers_stop(peer_tcp);
       
   271 
       
   272 		/*
       
   273 		 * At this point we are a detached eager tcp and therefore
       
   274 		 * don't have a queue assigned to us until accept happens.
       
   275 		 * In the mean time the peer endpoint may immediately send
       
   276 		 * us data as soon as fusion is finished, and we need to be
       
   277 		 * able to flow control it in case it sends down huge amount
       
   278 		 * of data while we're still detached.  To prevent that we
       
   279 		 * inherit the listener's q_hiwat value; this is temporary
       
   280 		 * since we'll repeat the process in tcp_accept_finish().
       
   281 		 */
       
   282 		(void) tcp_fuse_set_rcv_hiwat(tcp,
       
   283 		    tcp->tcp_saved_listener->tcp_rq->q_hiwat);
       
   284 
       
   285 		/*
       
   286 		 * Set the stream head's write offset value to zero since we
       
   287 		 * won't be needing any room for TCP/IP headers; tell it to
       
   288 		 * not break up the writes (this would reduce the amount of
       
   289 		 * work done by kmem); and configure our receive buffer.
       
   290 		 * Note that we can only do this for the active connect tcp
       
   291 		 * since our eager is still detached; it will be dealt with
       
   292 		 * later in tcp_accept_finish().
       
   293 		 */
       
   294 		DB_TYPE(mp) = M_SETOPTS;
       
   295 		mp->b_wptr += sizeof (*stropt);
       
   296 
       
   297 		stropt = (struct stroptions *)mp->b_rptr;
       
   298 		stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
       
   299 		stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
       
   300 		stropt->so_wroff = 0;
       
   301 
       
   302 		/*
       
   303 		 * Record the stream head's high water mark for
       
   304 		 * peer endpoint; this is used for flow-control
       
   305 		 * purposes in tcp_fuse_output().
       
   306 		 */
       
   307 		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp,
       
   308 		    peer_rq->q_hiwat);
       
   309 
       
   310 		/* Send the options up */
       
   311 		putnext(peer_rq, mp);
       
   312 	} else {
       
   313 		TCP_STAT(tcp_fusion_unqualified);
       
   314 	}
       
   315 	CONN_DEC_REF(peer_connp);
       
   316 	return;
       
   317 
       
   318 failed:
       
   319 	if (tcp->tcp_fused_sigurg_mp != NULL) {
       
   320 		freeb(tcp->tcp_fused_sigurg_mp);
       
   321 		tcp->tcp_fused_sigurg_mp = NULL;
       
   322 	}
       
   323 	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
       
   324 		freeb(peer_tcp->tcp_fused_sigurg_mp);
       
   325 		peer_tcp->tcp_fused_sigurg_mp = NULL;
       
   326 	}
       
   327 	CONN_DEC_REF(peer_connp);
       
   328 }
       
   329 
       
   330 /*
       
   331  * Unfuse a previously-fused pair of tcp loopback endpoints.
       
   332  */
       
   333 void
       
   334 tcp_unfuse(tcp_t *tcp)
       
   335 {
       
   336 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
       
   337 
       
   338 	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
       
   339 	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
       
   340 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
       
   341 	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
       
   342 	ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
       
   343 	ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
       
   344 
       
   345 	/*
       
   346 	 * We disable synchronous streams, drain any queued data and
       
   347 	 * clear tcp_direct_sockfs.  The synchronous streams entry
       
   348 	 * points will become no-ops after this point.
       
   349 	 */
       
   350 	tcp_fuse_disable_pair(tcp, B_TRUE);
       
   351 
       
   352 	/*
       
   353 	 * Update th_seq and th_ack in the header template
       
   354 	 */
       
   355 	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
       
   356 	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
       
   357 	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
       
   358 	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
       
   359 
       
   360 	/* Unfuse the endpoints */
       
   361 	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
       
   362 	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
       
   363 }
       
   364 
       
   365 /*
       
   366  * Fusion output routine for urgent data.  This routine is called by
       
   367  * tcp_fuse_output() for handling non-M_DATA mblks.
       
   368  */
       
   369 void
       
   370 tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
       
   371 {
       
   372 	mblk_t *mp1;
       
   373 	struct T_exdata_ind *tei;
       
   374 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
       
   375 	mblk_t *head, *prev_head = NULL;
       
   376 
       
   377 	ASSERT(tcp->tcp_fused);
       
   378 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
       
   379 	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
       
   380 	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
       
   381 	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
       
   382 
       
   383 	/*
       
   384 	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
       
   385 	 * Each occurence denotes a new urgent pointer.  For each new
       
   386 	 * urgent pointer we signal (SIGURG) the receiving app to indicate
       
   387 	 * that it needs to go into urgent mode.  This is similar to the
       
   388 	 * urgent data handling in the regular tcp.  We don't need to keep
       
   389 	 * track of where the urgent pointer is, because each T_EXDATA_REQ
       
   390 	 * "advances" the urgent pointer for us.
       
   391 	 *
       
   392 	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
       
   393 	 * by a T_EXDATA_IND before being enqueued behind any existing data
       
   394 	 * destined for the receiving app.  There is only a single urgent
       
   395 	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
       
   396 	 * data arrives before the receiving app reads some existing urgent
       
   397 	 * data, the previous marker is lost.  This behavior is emulated
       
   398 	 * accordingly below, by removing any existing T_EXDATA_IND messages
       
   399 	 * and essentially converting old urgent data into non-urgent.
       
   400 	 */
       
   401 	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
       
   402 	/* Let sender get out of urgent mode */
       
   403 	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
       
   404 
       
   405 	/*
       
   406 	 * This flag indicates that a signal needs to be sent up.
       
   407 	 * This flag will only get cleared once SIGURG is delivered and
       
   408 	 * is not affected by the tcp_fused flag -- delivery will still
       
   409 	 * happen even after an endpoint is unfused, to handle the case
       
   410 	 * where the sending endpoint immediately closes/unfuses after
       
   411 	 * sending urgent data and the accept is not yet finished.
       
   412 	 */
       
   413 	peer_tcp->tcp_fused_sigurg = B_TRUE;
       
   414 
       
   415 	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
       
   416 	DB_TYPE(mp) = M_PROTO;
       
   417 	tei = (struct T_exdata_ind *)mp->b_rptr;
       
   418 	tei->PRIM_type = T_EXDATA_IND;
       
   419 	tei->MORE_flag = 0;
       
   420 	mp->b_wptr = (uchar_t *)&tei[1];
       
   421 
       
   422 	TCP_STAT(tcp_fusion_urg);
       
   423 	BUMP_MIB(&tcp_mib, tcpOutUrg);
       
   424 
       
   425 	head = peer_tcp->tcp_rcv_list;
       
   426 	while (head != NULL) {
       
   427 		/*
       
   428 		 * Remove existing T_EXDATA_IND, keep the data which follows
       
   429 		 * it and relink our list.  Note that we don't modify the
       
   430 		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
       
   431 		 */
       
   432 		if (DB_TYPE(head) != M_DATA) {
       
   433 			mp1 = head;
       
   434 
       
   435 			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
       
   436 			head = mp1->b_cont;
       
   437 			mp1->b_cont = NULL;
       
   438 			head->b_next = mp1->b_next;
       
   439 			mp1->b_next = NULL;
       
   440 			if (prev_head != NULL)
       
   441 				prev_head->b_next = head;
       
   442 			if (peer_tcp->tcp_rcv_list == mp1)
       
   443 				peer_tcp->tcp_rcv_list = head;
       
   444 			if (peer_tcp->tcp_rcv_last_head == mp1)
       
   445 				peer_tcp->tcp_rcv_last_head = head;
       
   446 			freeb(mp1);
       
   447 		}
       
   448 		prev_head = head;
       
   449 		head = head->b_next;
       
   450 	}
       
   451 }
       
   452 
       
   453 /*
       
   454  * Fusion output routine, called by tcp_output() and tcp_wput_proto().
       
   455  */
       
   456 boolean_t
       
   457 tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
       
   458 {
       
   459 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
       
   460 	queue_t *peer_rq;
       
   461 	uint_t max_unread;
       
   462 	boolean_t flow_stopped;
       
   463 	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
       
   464 
       
   465 	ASSERT(tcp->tcp_fused);
       
   466 	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
       
   467 	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
       
   468 	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
       
   469 	    DB_TYPE(mp) == M_PCPROTO);
       
   470 
       
   471 	peer_rq = peer_tcp->tcp_rq;
       
   472 	max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
       
   473 
       
   474 	/* If this connection requires IP, unfuse and use regular path */
       
   475 	if (TCP_LOOPBACK_IP(tcp) || TCP_LOOPBACK_IP(peer_tcp) ||
       
   476 	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) {
       
   477 		TCP_STAT(tcp_fusion_aborted);
       
   478 		tcp_unfuse(tcp);
       
   479 		return (B_FALSE);
       
   480 	}
       
   481 
       
   482 	if (send_size == 0) {
       
   483 		freemsg(mp);
       
   484 		return (B_TRUE);
       
   485 	}
       
   486 
       
   487 	/*
       
   488 	 * Handle urgent data; we either send up SIGURG to the peer now
       
   489 	 * or do it later when we drain, in case the peer is detached
       
   490 	 * or if we're short of memory for M_PCSIG mblk.
       
   491 	 */
       
   492 	if (urgent) {
       
   493 		/*
       
   494 		 * We stop synchronous streams when we have urgent data
       
   495 		 * queued to prevent tcp_fuse_rrw() from pulling it.  If
       
   496 		 * for some reasons the urgent data can't be delivered
       
   497 		 * below, synchronous streams will remain stopped until
       
   498 		 * someone drains the tcp_rcv_list.
       
   499 		 */
       
   500 		TCP_FUSE_SYNCSTR_STOP(peer_tcp);
       
   501 		tcp_fuse_output_urg(tcp, mp);
       
   502 	}
       
   503 
       
   504 	mutex_enter(&peer_tcp->tcp_fuse_lock);
       
   505 	/*
       
   506 	 * Wake up and signal the peer; it is okay to do this before
       
   507 	 * enqueueing because we are holding the lock.  One of the
       
   508 	 * advantages of synchronous streams is the ability for us to
       
   509 	 * find out when the application performs a read on the socket,
       
   510 	 * by way of tcp_fuse_rrw() entry point being called.  Every
       
   511 	 * data that gets enqueued onto the receiver is treated as if
       
   512 	 * it has arrived at the receiving endpoint, thus generating
       
   513 	 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
       
   514 	 * case.  However, we only wake up the application when necessary,
       
   515 	 * i.e. during the first enqueue.  When tcp_fuse_rrw() is called
       
   516 	 * it will send everything upstream.
       
   517 	 */
       
   518 	if (peer_tcp->tcp_direct_sockfs && !urgent &&
       
   519 	    !TCP_IS_DETACHED(peer_tcp)) {
       
   520 		if (peer_tcp->tcp_rcv_list == NULL)
       
   521 			STR_WAKEUP_SET(STREAM(peer_tcp->tcp_rq));
       
   522 		/* Update poll events and send SIGPOLL/SIGIO if necessary */
       
   523 		STR_SENDSIG(STREAM(peer_tcp->tcp_rq));
       
   524 	}
       
   525 
       
   526 	/*
       
   527 	 * Enqueue data into the peer's receive list; we may or may not
       
   528 	 * drain the contents depending on the conditions below.
       
   529 	 */
       
   530 	tcp_rcv_enqueue(peer_tcp, mp, send_size);
       
   531 
       
   532 	/* In case it wrapped around and also to keep it constant */
       
   533 	peer_tcp->tcp_rwnd += send_size;
       
   534 
       
   535 	/*
       
   536 	 * Exercise flow-control when needed; we will get back-enabled
       
   537 	 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
       
   538 	 * If tcp_direct_sockfs is on or if the peer endpoint is detached,
       
   539 	 * we emulate streams flow control by checking the peer's queue
       
   540 	 * size and high water mark; otherwise we simply use canputnext()
       
   541 	 * to decide if we need to stop our flow.
       
   542 	 *
       
   543 	 * The outstanding unread data block check does not apply for a
       
   544 	 * detached receiver; this is to avoid unnecessary blocking of the
       
   545 	 * sender while the accept is currently in progress and is quite
       
   546 	 * similar to the regular tcp.
       
   547 	 */
       
   548 	if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
       
   549 		max_unread = UINT_MAX;
       
   550 
       
   551 	flow_stopped = tcp->tcp_flow_stopped;
       
   552 	if (!flow_stopped &&
       
   553 	    (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
       
   554 	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
       
   555 	    ++peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
       
   556 	    (!peer_tcp->tcp_direct_sockfs &&
       
   557 	    !TCP_IS_DETACHED(peer_tcp) && !canputnext(peer_tcp->tcp_rq)))) {
       
   558 		tcp_setqfull(tcp);
       
   559 		flow_stopped = B_TRUE;
       
   560 		TCP_STAT(tcp_fusion_flowctl);
       
   561 		DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
       
   562 		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
       
   563 		    uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
       
   564 	} else if (flow_stopped &&
       
   565 	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
       
   566 		tcp_clrqfull(tcp);
       
   567 	}
       
   568 
       
   569 	loopback_packets++;
       
   570 	tcp->tcp_last_sent_len = send_size;
       
   571 
       
   572 	/* Need to adjust the following SNMP MIB-related variables */
       
   573 	tcp->tcp_snxt += send_size;
       
   574 	tcp->tcp_suna = tcp->tcp_snxt;
       
   575 	peer_tcp->tcp_rnxt += send_size;
       
   576 	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
       
   577 
       
   578 	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
       
   579 	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, send_size);
       
   580 
       
   581 	BUMP_MIB(&tcp_mib, tcpInSegs);
       
   582 	BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
       
   583 	UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, send_size);
       
   584 
       
   585 	BUMP_LOCAL(tcp->tcp_obsegs);
       
   586 	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
       
   587 
       
   588 	mutex_exit(&peer_tcp->tcp_fuse_lock);
       
   589 
       
   590 	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
       
   591 
       
   592 	if (!TCP_IS_DETACHED(peer_tcp)) {
       
   593 		/*
       
   594 		 * Drain the peer's receive queue it has urgent data or if
       
   595 		 * we're not flow-controlled.  There is no need for draining
       
   596 		 * normal data when tcp_direct_sockfs is on because the peer
       
   597 		 * will pull the data via tcp_fuse_rrw().
       
   598 		 */
       
   599 		if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
       
   600 			ASSERT(peer_tcp->tcp_rcv_list != NULL);
       
   601 			(void) tcp_fuse_rcv_drain(peer_rq, peer_tcp, NULL);
       
   602 			/*
       
   603 			 * If synchronous streams was stopped above due
       
   604 			 * to the presence of urgent data, re-enable it.
       
   605 			 */
       
   606 			if (urgent)
       
   607 				TCP_FUSE_SYNCSTR_RESUME(peer_tcp);
       
   608 		}
       
   609 	}
       
   610 	return (B_TRUE);
       
   611 }
       
   612 
       
   613 /*
       
   614  * This routine gets called to deliver data upstream on a fused or
       
   615  * previously fused tcp loopback endpoint; the latter happens only
       
   616  * when there is a pending SIGURG signal plus urgent data that can't
       
   617  * be sent upstream in the past.
       
   618  */
       
   619 boolean_t
       
   620 tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
       
   621 {
       
   622 	mblk_t *mp;
       
   623 #ifdef DEBUG
       
   624 	uint_t cnt = 0;
       
   625 #endif
       
   626 
       
   627 	ASSERT(tcp->tcp_loopback);
       
   628 	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
       
   629 	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
       
   630 	ASSERT(sigurg_mpp != NULL || tcp->tcp_fused);
       
   631 
       
   632 	/* No need for the push timer now, in case it was scheduled */
       
   633 	if (tcp->tcp_push_tid != 0) {
       
   634 		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
       
   635 		tcp->tcp_push_tid = 0;
       
   636 	}
       
   637 	/*
       
   638 	 * If there's urgent data sitting in receive list and we didn't
       
   639 	 * get a chance to send up a SIGURG signal, make sure we send
       
   640 	 * it first before draining in order to ensure that SIOCATMARK
       
   641 	 * works properly.
       
   642 	 */
       
   643 	if (tcp->tcp_fused_sigurg) {
       
   644 		/*
       
   645 		 * sigurg_mpp is normally NULL, i.e. when we're still
       
   646 		 * fused and didn't get here because of tcp_unfuse().
       
   647 		 * In this case try hard to allocate the M_PCSIG mblk.
       
   648 		 */
       
   649 		if (sigurg_mpp == NULL &&
       
   650 		    (mp = allocb(1, BPRI_HI)) == NULL &&
       
   651 		    (mp = allocb_tryhard(1)) == NULL) {
       
   652 			/* Alloc failed; try again next time */
       
   653 			tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer,
       
   654 			    MSEC_TO_TICK(tcp_push_timer_interval));
       
   655 			return (B_TRUE);
       
   656 		} else if (sigurg_mpp != NULL) {
       
   657 			/*
       
   658 			 * Use the supplied M_PCSIG mblk; it means we're
       
   659 			 * either unfused or in the process of unfusing,
       
   660 			 * and the drain must happen now.
       
   661 			 */
       
   662 			mp = *sigurg_mpp;
       
   663 			*sigurg_mpp = NULL;
       
   664 		}
       
   665 		ASSERT(mp != NULL);
       
   666 
       
   667 		tcp->tcp_fused_sigurg = B_FALSE;
       
   668 		/* Send up the signal */
       
   669 		DB_TYPE(mp) = M_PCSIG;
       
   670 		*mp->b_wptr++ = (uchar_t)SIGURG;
       
   671 		putnext(q, mp);
       
   672 		/*
       
   673 		 * Let the regular tcp_rcv_drain() path handle
       
   674 		 * draining the data if we're no longer fused.
       
   675 		 */
       
   676 		if (!tcp->tcp_fused)
       
   677 			return (B_FALSE);
       
   678 	}
       
   679 
       
   680 	/*
       
   681 	 * In the synchronous streams case, we generate SIGPOLL/SIGIO for
       
   682 	 * each M_DATA that gets enqueued onto the receiver.  At this point
       
   683 	 * we are about to drain any queued data via putnext().  In order
       
   684 	 * to avoid extraneous signal generation from strrput(), we set
       
   685 	 * STRGETINPROG flag at the stream head prior to the draining and
       
   686 	 * restore it afterwards.  This masks out signal generation only
       
   687 	 * for M_DATA messages and does not affect urgent data.
       
   688 	 */
       
   689 	if (tcp->tcp_direct_sockfs)
       
   690 		strrput_sig(q, B_FALSE);
       
   691 
       
   692 	/* Drain the data */
       
   693 	while ((mp = tcp->tcp_rcv_list) != NULL) {
       
   694 		tcp->tcp_rcv_list = mp->b_next;
       
   695 		mp->b_next = NULL;
       
   696 #ifdef DEBUG
       
   697 		cnt += msgdsize(mp);
       
   698 #endif
       
   699 		putnext(q, mp);
       
   700 		TCP_STAT(tcp_fusion_putnext);
       
   701 	}
       
   702 
       
   703 	if (tcp->tcp_direct_sockfs)
       
   704 		strrput_sig(q, B_TRUE);
       
   705 
       
   706 	ASSERT(cnt == tcp->tcp_rcv_cnt);
       
   707 	tcp->tcp_rcv_last_head = NULL;
       
   708 	tcp->tcp_rcv_last_tail = NULL;
       
   709 	tcp->tcp_rcv_cnt = 0;
       
   710 	tcp->tcp_fuse_rcv_unread_cnt = 0;
       
   711 	tcp->tcp_rwnd = q->q_hiwat;
       
   712 
       
   713 	return (B_TRUE);
       
   714 }
       
   715 
       
   716 /*
       
   717  * Synchronous stream entry point for sockfs to retrieve
       
   718  * data directly from tcp_rcv_list.
       
   719  */
       
   720 int
       
   721 tcp_fuse_rrw(queue_t *q, struiod_t *dp)
       
   722 {
       
   723 	tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
       
   724 	mblk_t *mp;
       
   725 
       
   726 	mutex_enter(&tcp->tcp_fuse_lock);
       
   727 	/*
       
   728 	 * If someone had turned off tcp_direct_sockfs or if synchronous
       
   729 	 * streams is temporarily disabled, we return EBUSY.  This causes
       
   730 	 * strget() to dequeue data from the stream head instead.
       
   731 	 */
       
   732 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
       
   733 		mutex_exit(&tcp->tcp_fuse_lock);
       
   734 		TCP_STAT(tcp_fusion_rrw_busy);
       
   735 		return (EBUSY);
       
   736 	}
       
   737 
       
   738 	if ((mp = tcp->tcp_rcv_list) != NULL) {
       
   739 		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
       
   740 
       
   741 		DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
       
   742 		    uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
       
   743 
       
   744 		tcp->tcp_rcv_list = NULL;
       
   745 		TCP_STAT(tcp_fusion_rrw_msgcnt);
       
   746 
       
   747 		/*
       
   748 		 * At this point nothing should be left in tcp_rcv_list.
       
   749 		 * The only possible case where we would have a chain of
       
   750 		 * b_next-linked messages is urgent data, but we wouldn't
       
   751 		 * be here if that's true since urgent data is delivered
       
   752 		 * via putnext() and synchronous streams is stopped until
       
   753 		 * tcp_fuse_rcv_drain() is finished.
       
   754 		 */
       
   755 		ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
       
   756 
       
   757 		tcp->tcp_rcv_last_head = NULL;
       
   758 		tcp->tcp_rcv_last_tail = NULL;
       
   759 		tcp->tcp_rcv_cnt = 0;
       
   760 		tcp->tcp_fuse_rcv_unread_cnt = 0;
       
   761 
       
   762 		if (peer_tcp->tcp_flow_stopped) {
       
   763 			tcp_clrqfull(peer_tcp);
       
   764 			TCP_STAT(tcp_fusion_backenabled);
       
   765 		}
       
   766 	}
       
   767 
       
   768 	/*
       
   769 	 * Either we just dequeued everything or we get here from sockfs
       
   770 	 * and have nothing to return; in this case clear RSLEEP.
       
   771 	 */
       
   772 	ASSERT(tcp->tcp_rcv_last_head == NULL);
       
   773 	ASSERT(tcp->tcp_rcv_last_tail == NULL);
       
   774 	ASSERT(tcp->tcp_rcv_cnt == 0);
       
   775 	ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
       
   776 	STR_WAKEUP_CLEAR(STREAM(q));
       
   777 
       
   778 	mutex_exit(&tcp->tcp_fuse_lock);
       
   779 	dp->d_mp = mp;
       
   780 	return (0);
       
   781 }
       
   782 
       
   783 /*
       
   784  * Synchronous stream entry point used by certain ioctls to retrieve
       
   785  * information about or peek into the tcp_rcv_list.
       
   786  */
       
   787 int
       
   788 tcp_fuse_rinfop(queue_t *q, infod_t *dp)
       
   789 {
       
   790 	tcp_t	*tcp = Q_TO_CONN(q)->conn_tcp;
       
   791 	mblk_t	*mp;
       
   792 	uint_t	cmd = dp->d_cmd;
       
   793 	int	res = 0;
       
   794 	int	error = 0;
       
   795 	struct stdata *stp = STREAM(q);
       
   796 
       
   797 	mutex_enter(&tcp->tcp_fuse_lock);
       
   798 	/* If shutdown on read has happened, return nothing */
       
   799 	mutex_enter(&stp->sd_lock);
       
   800 	if (stp->sd_flag & STREOF) {
       
   801 		mutex_exit(&stp->sd_lock);
       
   802 		goto done;
       
   803 	}
       
   804 	mutex_exit(&stp->sd_lock);
       
   805 
       
   806 	/*
       
   807 	 * It is OK not to return an answer if tcp_rcv_list is
       
   808 	 * currently not accessible.
       
   809 	 */
       
   810 	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
       
   811 	    (mp = tcp->tcp_rcv_list) == NULL)
       
   812 		goto done;
       
   813 
       
   814 	if (cmd & INFOD_COUNT) {
       
   815 		/*
       
   816 		 * We have at least one message and
       
   817 		 * could return only one at a time.
       
   818 		 */
       
   819 		dp->d_count++;
       
   820 		res |= INFOD_COUNT;
       
   821 	}
       
   822 	if (cmd & INFOD_BYTES) {
       
   823 		/*
       
   824 		 * Return size of all data messages.
       
   825 		 */
       
   826 		dp->d_bytes += tcp->tcp_rcv_cnt;
       
   827 		res |= INFOD_BYTES;
       
   828 	}
       
   829 	if (cmd & INFOD_FIRSTBYTES) {
       
   830 		/*
       
   831 		 * Return size of first data message.
       
   832 		 */
       
   833 		dp->d_bytes = msgdsize(mp);
       
   834 		res |= INFOD_FIRSTBYTES;
       
   835 		dp->d_cmd &= ~INFOD_FIRSTBYTES;
       
   836 	}
       
   837 	if (cmd & INFOD_COPYOUT) {
       
   838 		mblk_t *mp1;
       
   839 		int n;
       
   840 
       
   841 		if (DB_TYPE(mp) == M_DATA) {
       
   842 			mp1 = mp;
       
   843 		} else {
       
   844 			mp1 = mp->b_cont;
       
   845 			ASSERT(mp1 != NULL);
       
   846 		}
       
   847 
       
   848 		/*
       
   849 		 * Return data contents of first message.
       
   850 		 */
       
   851 		ASSERT(DB_TYPE(mp1) == M_DATA);
       
   852 		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
       
   853 			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
       
   854 			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
       
   855 			    UIO_READ, dp->d_uiop)) != 0) {
       
   856 				goto done;
       
   857 			}
       
   858 			mp1 = mp1->b_cont;
       
   859 		}
       
   860 		res |= INFOD_COPYOUT;
       
   861 		dp->d_cmd &= ~INFOD_COPYOUT;
       
   862 	}
       
   863 done:
       
   864 	mutex_exit(&tcp->tcp_fuse_lock);
       
   865 
       
   866 	dp->d_res |= res;
       
   867 
       
   868 	return (error);
       
   869 }
       
   870 
       
   871 /*
       
   872  * Enable synchronous streams on a fused tcp loopback endpoint.
       
   873  */
       
   874 static void
       
   875 tcp_fuse_syncstr_enable(tcp_t *tcp)
       
   876 {
       
   877 	queue_t *rq = tcp->tcp_rq;
       
   878 	struct stdata *stp = STREAM(rq);
       
   879 
       
   880 	/* We can only enable synchronous streams for sockfs mode */
       
   881 	tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
       
   882 
       
   883 	if (!tcp->tcp_direct_sockfs)
       
   884 		return;
       
   885 
       
   886 	mutex_enter(&stp->sd_lock);
       
   887 	mutex_enter(QLOCK(rq));
       
   888 
       
   889 	/*
       
   890 	 * We replace our q_qinfo with one that has the qi_rwp entry point.
       
   891 	 * Clear SR_SIGALLDATA because we generate the equivalent signal(s)
       
   892 	 * for every enqueued data in tcp_fuse_output().
       
   893 	 */
       
   894 	rq->q_qinfo = &tcp_loopback_rinit;
       
   895 	rq->q_struiot = tcp_loopback_rinit.qi_struiot;
       
   896 	stp->sd_struiordq = rq;
       
   897 	stp->sd_rput_opt &= ~SR_SIGALLDATA;
       
   898 
       
   899 	mutex_exit(QLOCK(rq));
       
   900 	mutex_exit(&stp->sd_lock);
       
   901 }
       
   902 
       
   903 /*
       
   904  * Disable synchronous streams on a fused tcp loopback endpoint.
       
   905  */
       
   906 static void
       
   907 tcp_fuse_syncstr_disable(tcp_t *tcp)
       
   908 {
       
   909 	queue_t *rq = tcp->tcp_rq;
       
   910 	struct stdata *stp = STREAM(rq);
       
   911 
       
   912 	if (!tcp->tcp_direct_sockfs)
       
   913 		return;
       
   914 
       
   915 	mutex_enter(&stp->sd_lock);
       
   916 	mutex_enter(QLOCK(rq));
       
   917 
       
   918 	/*
       
   919 	 * Reset q_qinfo to point to the default tcp entry points.
       
   920 	 * Also restore SR_SIGALLDATA so that strrput() can generate
       
   921 	 * the signals again for future M_DATA messages.
       
   922 	 */
       
   923 	rq->q_qinfo = &tcp_rinit;
       
   924 	rq->q_struiot = tcp_rinit.qi_struiot;
       
   925 	stp->sd_struiordq = NULL;
       
   926 	stp->sd_rput_opt |= SR_SIGALLDATA;
       
   927 	tcp->tcp_direct_sockfs = B_FALSE;
       
   928 
       
   929 	mutex_exit(QLOCK(rq));
       
   930 	mutex_exit(&stp->sd_lock);
       
   931 }
       
   932 
       
   933 /*
       
   934  * Enable synchronous streams on a pair of fused tcp endpoints.
       
   935  */
       
   936 void
       
   937 tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
       
   938 {
       
   939 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
       
   940 
       
   941 	ASSERT(tcp->tcp_fused);
       
   942 	ASSERT(peer_tcp != NULL);
       
   943 
       
   944 	tcp_fuse_syncstr_enable(tcp);
       
   945 	tcp_fuse_syncstr_enable(peer_tcp);
       
   946 }
       
   947 
       
   948 /*
       
   949  * Allow or disallow signals to be generated by strrput().
       
   950  */
       
   951 static void
       
   952 strrput_sig(queue_t *q, boolean_t on)
       
   953 {
       
   954 	struct stdata *stp = STREAM(q);
       
   955 
       
   956 	mutex_enter(&stp->sd_lock);
       
   957 	if (on)
       
   958 		stp->sd_flag &= ~STRGETINPROG;
       
   959 	else
       
   960 		stp->sd_flag |= STRGETINPROG;
       
   961 	mutex_exit(&stp->sd_lock);
       
   962 }
       
   963 
       
   964 /*
       
   965  * Disable synchronous streams on a pair of fused tcp endpoints and drain
       
   966  * any queued data; called either during unfuse or upon transitioning from
       
   967  * a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
       
   968  */
       
   969 void
       
   970 tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
       
   971 {
       
   972 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
       
   973 
       
   974 	ASSERT(tcp->tcp_fused);
       
   975 	ASSERT(peer_tcp != NULL);
       
   976 
       
   977 	/*
       
   978 	 * We need to prevent tcp_fuse_rrw() from entering before
       
   979 	 * we can disable synchronous streams.
       
   980 	 */
       
   981 	TCP_FUSE_SYNCSTR_STOP(tcp);
       
   982 	TCP_FUSE_SYNCSTR_STOP(peer_tcp);
       
   983 
       
   984 	/*
       
   985 	 * Drain any pending data; the detached check is needed because
       
   986 	 * we may be called as a result of a tcp_unfuse() triggered by
       
   987 	 * tcp_fuse_output().  Note that in case of a detached tcp, the
       
   988 	 * draining will happen later after the tcp is unfused.  For non-
       
   989 	 * urgent data, this can be handled by the regular tcp_rcv_drain().
       
   990 	 * If we have urgent data sitting in the receive list, we will
       
   991 	 * need to send up a SIGURG signal first before draining the data.
       
   992 	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
       
   993 	 * when called from tcp_rcv_drain().
       
   994 	 */
       
   995 	if (!TCP_IS_DETACHED(tcp)) {
       
   996 		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
       
   997 		    (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
       
   998 	}
       
   999 	if (!TCP_IS_DETACHED(peer_tcp)) {
       
  1000 		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
       
  1001 		    (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
       
  1002 	}
       
  1003 
       
  1004 	/* Lift up any flow-control conditions */
       
  1005 	if (tcp->tcp_flow_stopped) {
       
  1006 		tcp_clrqfull(tcp);
       
  1007 		TCP_STAT(tcp_fusion_backenabled);
       
  1008 	}
       
  1009 	if (peer_tcp->tcp_flow_stopped) {
       
  1010 		tcp_clrqfull(peer_tcp);
       
  1011 		TCP_STAT(tcp_fusion_backenabled);
       
  1012 	}
       
  1013 
       
  1014 	/* Disable synchronous streams */
       
  1015 	tcp_fuse_syncstr_disable(tcp);
       
  1016 	tcp_fuse_syncstr_disable(peer_tcp);
       
  1017 }
       
  1018 
       
  1019 /*
       
  1020  * Calculate the size of receive buffer for a fused tcp endpoint.
       
  1021  */
       
  1022 size_t
       
  1023 tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
       
  1024 {
       
  1025 	ASSERT(tcp->tcp_fused);
       
  1026 
       
  1027 	/* Ensure that value is within the maximum upper bound */
       
  1028 	if (rwnd > tcp_max_buf)
       
  1029 		rwnd = tcp_max_buf;
       
  1030 
       
  1031 	/* Obey the absolute minimum tcp receive high water mark */
       
  1032 	if (rwnd < tcp_sth_rcv_hiwat)
       
  1033 		rwnd = tcp_sth_rcv_hiwat;
       
  1034 
       
  1035 	/*
       
  1036 	 * Round up to system page size in case SO_RCVBUF is modified
       
  1037 	 * after SO_SNDBUF; the latter is also similarly rounded up.
       
  1038 	 */
       
  1039 	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
       
  1040 	tcp->tcp_fuse_rcv_hiwater = rwnd;
       
  1041 	return (rwnd);
       
  1042 }
       
  1043 
       
  1044 /*
       
  1045  * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
       
  1046  */
       
  1047 int
       
  1048 tcp_fuse_maxpsz_set(tcp_t *tcp)
       
  1049 {
       
  1050 	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
       
  1051 	uint_t sndbuf = tcp->tcp_xmit_hiwater;
       
  1052 	uint_t maxpsz = sndbuf;
       
  1053 
       
  1054 	ASSERT(tcp->tcp_fused);
       
  1055 	ASSERT(peer_tcp != NULL);
       
  1056 	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
       
  1057 	/*
       
  1058 	 * In the fused loopback case, we want the stream head to split
       
  1059 	 * up larger writes into smaller chunks for a more accurate flow-
       
  1060 	 * control accounting.  Our maxpsz is half of the sender's send
       
  1061 	 * buffer or the receiver's receive buffer, whichever is smaller.
       
  1062 	 * We round up the buffer to system page size due to the lack of
       
  1063 	 * TCP MSS concept in Fusion.
       
  1064 	 */
       
  1065 	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
       
  1066 		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
       
  1067 	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
       
  1068 
       
  1069 	/*
       
  1070 	 * Calculate the peer's limit for the number of outstanding unread
       
  1071 	 * data block.  This is the amount of data blocks that are allowed
       
  1072 	 * to reside in the receiver's queue before the sender gets flow
       
  1073 	 * controlled.  It is used only in the synchronous streams mode as
       
  1074 	 * a way to throttle the sender when it performs consecutive writes
       
  1075 	 * faster than can be read.  The value is derived from SO_SNDBUF in
       
  1076 	 * order to give the sender some control; we divide it with a large
       
  1077 	 * value (16KB) to produce a fairly low initial limit.
       
  1078 	 */
       
  1079 	if (tcp_fusion_rcv_unread_min == 0) {
       
  1080 		/* A value of 0 means that we disable the check */
       
  1081 		peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
       
  1082 	} else {
       
  1083 		peer_tcp->tcp_fuse_rcv_unread_hiwater =
       
  1084 		    MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
       
  1085 	}
       
  1086 	return (maxpsz);
       
  1087 }