usr/src/uts/common/inet/tcp/tcp_fusion.c
changeset 741 40027a3621ac
child 2024 444fb85b9dd5
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/usr/src/uts/common/inet/tcp/tcp_fusion.c	Sat Oct 22 22:50:14 2005 -0700
@@ -0,0 +1,1087 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License, Version 1.0 only
+ * (the "License").  You may not use this file except in compliance
+ * with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or http://www.opensolaris.org/os/licensing.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
+ * Use is subject to license terms.
+ */
+
+#pragma ident	"%Z%%M%	%I%	%E% SMI"
+
+#include <sys/types.h>
+#include <sys/stream.h>
+#include <sys/strsun.h>
+#include <sys/strsubr.h>
+#include <sys/debug.h>
+#include <sys/cmn_err.h>
+#include <sys/tihdr.h>
+
+#include <inet/common.h>
+#include <inet/ip.h>
+#include <inet/ip_impl.h>
+#include <inet/tcp.h>
+#include <inet/tcp_impl.h>
+#include <inet/ipsec_impl.h>
+#include <inet/ipclassifier.h>
+#include <inet/ipp_common.h>
+
+/*
+ * This file implements TCP fusion - a protocol-less data path for TCP
+ * loopback connections.  The fusion of two local TCP endpoints occurs
+ * at connection establishment time.  Various conditions (see details
+ * in tcp_fuse()) need to be met for fusion to be successful.  If it
+ * fails, we fall back to the regular TCP data path; if it succeeds,
+ * both endpoints proceed to use tcp_fuse_output() as the transmit path.
+ * tcp_fuse_output() enqueues application data directly onto the peer's
+ * receive queue; no protocol processing is involved.  After enqueueing
+ * the data, the sender can either push (putnext) data up the receiver's
+ * read queue; or the sender can simply return and let the receiver
+ * retrieve the enqueued data via the synchronous streams entry point
+ * tcp_fuse_rrw().  The latter path is taken if synchronous streams is
+ * enabled (the default).  It is disabled if sockfs no longer resides
+ * directly on top of tcp module due to a module insertion or removal.
+ * It also needs to be temporarily disabled when sending urgent data
+ * because the tcp_fuse_rrw() path bypasses the M_PROTO processing done
+ * by strsock_proto() hook.
+ *
+ * Sychronization is handled by squeue and the mutex tcp_fuse_lock.
+ * One of the requirements for fusion to succeed is that both endpoints
+ * need to be using the same squeue.  This ensures that neither side
+ * can disappear while the other side is still sending data.  By itself,
+ * squeue is not sufficient for guaranteeing safety when synchronous
+ * streams is enabled.  The reason is that tcp_fuse_rrw() doesn't enter
+ * the squeue and its access to tcp_rcv_list and other fusion-related
+ * fields needs to be sychronized with the sender.  tcp_fuse_lock is
+ * used for this purpose.  When there is urgent data, the sender needs
+ * to push the data up the receiver's streams read queue.  In order to
+ * avoid holding the tcp_fuse_lock across putnext(), the sender sets
+ * the peer tcp's tcp_fuse_syncstr_stopped bit and releases tcp_fuse_lock
+ * (see macro TCP_FUSE_SYNCSTR_STOP()).  If tcp_fuse_rrw() enters after
+ * this point, it will see that synchronous streams is temporarily
+ * stopped and it will immediately return EBUSY without accessing the
+ * tcp_rcv_list or other fields protected by the tcp_fuse_lock.  This
+ * will result in strget() calling getq_noenab() to dequeue data from
+ * the stream head instead.  After the sender has finished pushing up
+ * all urgent data, it will clear the tcp_fuse_syncstr_stopped bit using
+ * TCP_FUSE_SYNCSTR_RESUME and the receiver may then resume using
+ * tcp_fuse_rrw() to retrieve data from tcp_rcv_list.
+ *
+ * The following note applies only to the synchronous streams mode.
+ *
+ * Flow control is done by checking the size of receive buffer and
+ * the number of data blocks, both set to different limits.  This is
+ * different than regular streams flow control where cumulative size
+ * check dominates block count check -- streams queue high water mark
+ * typically represents bytes.  Each enqueue triggers notifications
+ * to the receiving process; a build up of data blocks indicates a
+ * slow receiver and the sender should be blocked or informed at the
+ * earliest moment instead of further wasting system resources.  In
+ * effect, this is equivalent to limiting the number of outstanding
+ * segments in flight.
+ */
+
+/*
+ * Macros that determine whether or not IP processing is needed for TCP.
+ */
+#define	TCP_IPOPT_POLICY_V4(tcp)					\
+	((tcp)->tcp_ipversion == IPV4_VERSION &&			\
+	((tcp)->tcp_ip_hdr_len != IP_SIMPLE_HDR_LENGTH ||		\
+	CONN_OUTBOUND_POLICY_PRESENT((tcp)->tcp_connp) ||		\
+	CONN_INBOUND_POLICY_PRESENT((tcp)->tcp_connp)))
+
+#define	TCP_IPOPT_POLICY_V6(tcp)					\
+	((tcp)->tcp_ipversion == IPV6_VERSION &&			\
+	((tcp)->tcp_ip_hdr_len != IPV6_HDR_LEN ||			\
+	CONN_OUTBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp) ||		\
+	CONN_INBOUND_POLICY_PRESENT_V6((tcp)->tcp_connp)))
+
+#define	TCP_LOOPBACK_IP(tcp)						\
+	(TCP_IPOPT_POLICY_V4(tcp) || TCP_IPOPT_POLICY_V6(tcp) ||	\
+	!CONN_IS_MD_FASTPATH((tcp)->tcp_connp))
+
+/*
+ * Setting this to false means we disable fusion altogether and
+ * loopback connections would go through the protocol paths.
+ */
+boolean_t do_tcp_fusion = B_TRUE;
+
+/*
+ * Enabling this flag allows sockfs to retrieve data directly
+ * from a fused tcp endpoint using synchronous streams interface.
+ */
+boolean_t do_tcp_direct_sockfs = B_TRUE;
+
+/*
+ * This is the minimum amount of outstanding writes allowed on
+ * a synchronous streams-enabled receiving endpoint before the
+ * sender gets flow-controlled.  Setting this value to 0 means
+ * that the data block limit is equivalent to the byte count
+ * limit, which essentially disables the check.
+ */
+#define	TCP_FUSION_RCV_UNREAD_MIN	8
+uint_t tcp_fusion_rcv_unread_min = TCP_FUSION_RCV_UNREAD_MIN;
+
+static void	tcp_fuse_syncstr_enable(tcp_t *);
+static void	tcp_fuse_syncstr_disable(tcp_t *);
+static void	strrput_sig(queue_t *, boolean_t);
+
+/*
+ * This routine gets called by the eager tcp upon changing state from
+ * SYN_RCVD to ESTABLISHED.  It fuses a direct path between itself
+ * and the active connect tcp such that the regular tcp processings
+ * may be bypassed under allowable circumstances.  Because the fusion
+ * requires both endpoints to be in the same squeue, it does not work
+ * for simultaneous active connects because there is no easy way to
+ * switch from one squeue to another once the connection is created.
+ * This is different from the eager tcp case where we assign it the
+ * same squeue as the one given to the active connect tcp during open.
+ */
+void
+tcp_fuse(tcp_t *tcp, uchar_t *iphdr, tcph_t *tcph)
+{
+	conn_t *peer_connp, *connp = tcp->tcp_connp;
+	tcp_t *peer_tcp;
+
+	ASSERT(!tcp->tcp_fused);
+	ASSERT(tcp->tcp_loopback);
+	ASSERT(tcp->tcp_loopback_peer == NULL);
+	/*
+	 * We need to inherit q_hiwat of the listener tcp, but we can't
+	 * really use tcp_listener since we get here after sending up
+	 * T_CONN_IND and tcp_wput_accept() may be called independently,
+	 * at which point tcp_listener is cleared; this is why we use
+	 * tcp_saved_listener.  The listener itself is guaranteed to be
+	 * around until tcp_accept_finish() is called on this eager --
+	 * this won't happen until we're done since we're inside the
+	 * eager's perimeter now.
+	 */
+	ASSERT(tcp->tcp_saved_listener != NULL);
+
+	/*
+	 * Lookup peer endpoint; search for the remote endpoint having
+	 * the reversed address-port quadruplet in ESTABLISHED state,
+	 * which is guaranteed to be unique in the system.  Zone check
+	 * is applied accordingly for loopback address, but not for
+	 * local address since we want fusion to happen across Zones.
+	 */
+	if (tcp->tcp_ipversion == IPV4_VERSION) {
+		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv4(connp,
+		    (ipha_t *)iphdr, tcph);
+	} else {
+		peer_connp = ipcl_conn_tcp_lookup_reversed_ipv6(connp,
+		    (ip6_t *)iphdr, tcph);
+	}
+
+	/*
+	 * We can only proceed if peer exists, resides in the same squeue
+	 * as our conn and is not raw-socket.  The squeue assignment of
+	 * this eager tcp was done earlier at the time of SYN processing
+	 * in ip_fanout_tcp{_v6}.  Note that similar squeues by itself
+	 * doesn't guarantee a safe condition to fuse, hence we perform
+	 * additional tests below.
+	 */
+	ASSERT(peer_connp == NULL || peer_connp != connp);
+	if (peer_connp == NULL || peer_connp->conn_sqp != connp->conn_sqp ||
+	    !IPCL_IS_TCP(peer_connp)) {
+		if (peer_connp != NULL) {
+			TCP_STAT(tcp_fusion_unqualified);
+			CONN_DEC_REF(peer_connp);
+		}
+		return;
+	}
+	peer_tcp = peer_connp->conn_tcp;	/* active connect tcp */
+
+	ASSERT(peer_tcp != NULL && peer_tcp != tcp && !peer_tcp->tcp_fused);
+	ASSERT(peer_tcp->tcp_loopback && peer_tcp->tcp_loopback_peer == NULL);
+	ASSERT(peer_connp->conn_sqp == connp->conn_sqp);
+
+	/*
+	 * Fuse the endpoints; we perform further checks against both
+	 * tcp endpoints to ensure that a fusion is allowed to happen.
+	 * In particular we bail out for non-simple TCP/IP or if IPsec/
+	 * IPQoS policy exists.
+	 */
+	if (!tcp->tcp_unfusable && !peer_tcp->tcp_unfusable &&
+	    !TCP_LOOPBACK_IP(tcp) && !TCP_LOOPBACK_IP(peer_tcp) &&
+	    !IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) {
+		mblk_t *mp;
+		struct stroptions *stropt;
+		queue_t *peer_rq = peer_tcp->tcp_rq;
+
+		ASSERT(!TCP_IS_DETACHED(peer_tcp) && peer_rq != NULL);
+		ASSERT(tcp->tcp_fused_sigurg_mp == NULL);
+		ASSERT(peer_tcp->tcp_fused_sigurg_mp == NULL);
+
+		/*
+		 * We need to drain data on both endpoints during unfuse.
+		 * If we need to send up SIGURG at the time of draining,
+		 * we want to be sure that an mblk is readily available.
+		 * This is why we pre-allocate the M_PCSIG mblks for both
+		 * endpoints which will only be used during/after unfuse.
+		 */
+		if ((mp = allocb(1, BPRI_HI)) == NULL)
+			goto failed;
+
+		tcp->tcp_fused_sigurg_mp = mp;
+
+		if ((mp = allocb(1, BPRI_HI)) == NULL)
+			goto failed;
+
+		peer_tcp->tcp_fused_sigurg_mp = mp;
+
+		/* Allocate M_SETOPTS mblk */
+		if ((mp = allocb(sizeof (*stropt), BPRI_HI)) == NULL)
+			goto failed;
+
+		/* Fuse both endpoints */
+		peer_tcp->tcp_loopback_peer = tcp;
+		tcp->tcp_loopback_peer = peer_tcp;
+		peer_tcp->tcp_fused = tcp->tcp_fused = B_TRUE;
+
+		/*
+		 * We never use regular tcp paths in fusion and should
+		 * therefore clear tcp_unsent on both endpoints.  Having
+		 * them set to non-zero values means asking for trouble
+		 * especially after unfuse, where we may end up sending
+		 * through regular tcp paths which expect xmit_list and
+		 * friends to be correctly setup.
+		 */
+		peer_tcp->tcp_unsent = tcp->tcp_unsent = 0;
+
+		tcp_timers_stop(tcp);
+		tcp_timers_stop(peer_tcp);
+
+		/*
+		 * At this point we are a detached eager tcp and therefore
+		 * don't have a queue assigned to us until accept happens.
+		 * In the mean time the peer endpoint may immediately send
+		 * us data as soon as fusion is finished, and we need to be
+		 * able to flow control it in case it sends down huge amount
+		 * of data while we're still detached.  To prevent that we
+		 * inherit the listener's q_hiwat value; this is temporary
+		 * since we'll repeat the process in tcp_accept_finish().
+		 */
+		(void) tcp_fuse_set_rcv_hiwat(tcp,
+		    tcp->tcp_saved_listener->tcp_rq->q_hiwat);
+
+		/*
+		 * Set the stream head's write offset value to zero since we
+		 * won't be needing any room for TCP/IP headers; tell it to
+		 * not break up the writes (this would reduce the amount of
+		 * work done by kmem); and configure our receive buffer.
+		 * Note that we can only do this for the active connect tcp
+		 * since our eager is still detached; it will be dealt with
+		 * later in tcp_accept_finish().
+		 */
+		DB_TYPE(mp) = M_SETOPTS;
+		mp->b_wptr += sizeof (*stropt);
+
+		stropt = (struct stroptions *)mp->b_rptr;
+		stropt->so_flags = SO_MAXBLK | SO_WROFF | SO_HIWAT;
+		stropt->so_maxblk = tcp_maxpsz_set(peer_tcp, B_FALSE);
+		stropt->so_wroff = 0;
+
+		/*
+		 * Record the stream head's high water mark for
+		 * peer endpoint; this is used for flow-control
+		 * purposes in tcp_fuse_output().
+		 */
+		stropt->so_hiwat = tcp_fuse_set_rcv_hiwat(peer_tcp,
+		    peer_rq->q_hiwat);
+
+		/* Send the options up */
+		putnext(peer_rq, mp);
+	} else {
+		TCP_STAT(tcp_fusion_unqualified);
+	}
+	CONN_DEC_REF(peer_connp);
+	return;
+
+failed:
+	if (tcp->tcp_fused_sigurg_mp != NULL) {
+		freeb(tcp->tcp_fused_sigurg_mp);
+		tcp->tcp_fused_sigurg_mp = NULL;
+	}
+	if (peer_tcp->tcp_fused_sigurg_mp != NULL) {
+		freeb(peer_tcp->tcp_fused_sigurg_mp);
+		peer_tcp->tcp_fused_sigurg_mp = NULL;
+	}
+	CONN_DEC_REF(peer_connp);
+}
+
+/*
+ * Unfuse a previously-fused pair of tcp loopback endpoints.
+ */
+void
+tcp_unfuse(tcp_t *tcp)
+{
+	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
+
+	ASSERT(tcp->tcp_fused && peer_tcp != NULL);
+	ASSERT(peer_tcp->tcp_fused && peer_tcp->tcp_loopback_peer == tcp);
+	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
+	ASSERT(tcp->tcp_unsent == 0 && peer_tcp->tcp_unsent == 0);
+	ASSERT(tcp->tcp_fused_sigurg_mp != NULL);
+	ASSERT(peer_tcp->tcp_fused_sigurg_mp != NULL);
+
+	/*
+	 * We disable synchronous streams, drain any queued data and
+	 * clear tcp_direct_sockfs.  The synchronous streams entry
+	 * points will become no-ops after this point.
+	 */
+	tcp_fuse_disable_pair(tcp, B_TRUE);
+
+	/*
+	 * Update th_seq and th_ack in the header template
+	 */
+	U32_TO_ABE32(tcp->tcp_snxt, tcp->tcp_tcph->th_seq);
+	U32_TO_ABE32(tcp->tcp_rnxt, tcp->tcp_tcph->th_ack);
+	U32_TO_ABE32(peer_tcp->tcp_snxt, peer_tcp->tcp_tcph->th_seq);
+	U32_TO_ABE32(peer_tcp->tcp_rnxt, peer_tcp->tcp_tcph->th_ack);
+
+	/* Unfuse the endpoints */
+	peer_tcp->tcp_fused = tcp->tcp_fused = B_FALSE;
+	peer_tcp->tcp_loopback_peer = tcp->tcp_loopback_peer = NULL;
+}
+
+/*
+ * Fusion output routine for urgent data.  This routine is called by
+ * tcp_fuse_output() for handling non-M_DATA mblks.
+ */
+void
+tcp_fuse_output_urg(tcp_t *tcp, mblk_t *mp)
+{
+	mblk_t *mp1;
+	struct T_exdata_ind *tei;
+	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
+	mblk_t *head, *prev_head = NULL;
+
+	ASSERT(tcp->tcp_fused);
+	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
+	ASSERT(DB_TYPE(mp) == M_PROTO || DB_TYPE(mp) == M_PCPROTO);
+	ASSERT(mp->b_cont != NULL && DB_TYPE(mp->b_cont) == M_DATA);
+	ASSERT(MBLKL(mp) >= sizeof (*tei) && MBLKL(mp->b_cont) > 0);
+
+	/*
+	 * Urgent data arrives in the form of T_EXDATA_REQ from above.
+	 * Each occurence denotes a new urgent pointer.  For each new
+	 * urgent pointer we signal (SIGURG) the receiving app to indicate
+	 * that it needs to go into urgent mode.  This is similar to the
+	 * urgent data handling in the regular tcp.  We don't need to keep
+	 * track of where the urgent pointer is, because each T_EXDATA_REQ
+	 * "advances" the urgent pointer for us.
+	 *
+	 * The actual urgent data carried by T_EXDATA_REQ is then prepended
+	 * by a T_EXDATA_IND before being enqueued behind any existing data
+	 * destined for the receiving app.  There is only a single urgent
+	 * pointer (out-of-band mark) for a given tcp.  If the new urgent
+	 * data arrives before the receiving app reads some existing urgent
+	 * data, the previous marker is lost.  This behavior is emulated
+	 * accordingly below, by removing any existing T_EXDATA_IND messages
+	 * and essentially converting old urgent data into non-urgent.
+	 */
+	ASSERT(tcp->tcp_valid_bits & TCP_URG_VALID);
+	/* Let sender get out of urgent mode */
+	tcp->tcp_valid_bits &= ~TCP_URG_VALID;
+
+	/*
+	 * This flag indicates that a signal needs to be sent up.
+	 * This flag will only get cleared once SIGURG is delivered and
+	 * is not affected by the tcp_fused flag -- delivery will still
+	 * happen even after an endpoint is unfused, to handle the case
+	 * where the sending endpoint immediately closes/unfuses after
+	 * sending urgent data and the accept is not yet finished.
+	 */
+	peer_tcp->tcp_fused_sigurg = B_TRUE;
+
+	/* Reuse T_EXDATA_REQ mblk for T_EXDATA_IND */
+	DB_TYPE(mp) = M_PROTO;
+	tei = (struct T_exdata_ind *)mp->b_rptr;
+	tei->PRIM_type = T_EXDATA_IND;
+	tei->MORE_flag = 0;
+	mp->b_wptr = (uchar_t *)&tei[1];
+
+	TCP_STAT(tcp_fusion_urg);
+	BUMP_MIB(&tcp_mib, tcpOutUrg);
+
+	head = peer_tcp->tcp_rcv_list;
+	while (head != NULL) {
+		/*
+		 * Remove existing T_EXDATA_IND, keep the data which follows
+		 * it and relink our list.  Note that we don't modify the
+		 * tcp_rcv_last_tail since it never points to T_EXDATA_IND.
+		 */
+		if (DB_TYPE(head) != M_DATA) {
+			mp1 = head;
+
+			ASSERT(DB_TYPE(mp1->b_cont) == M_DATA);
+			head = mp1->b_cont;
+			mp1->b_cont = NULL;
+			head->b_next = mp1->b_next;
+			mp1->b_next = NULL;
+			if (prev_head != NULL)
+				prev_head->b_next = head;
+			if (peer_tcp->tcp_rcv_list == mp1)
+				peer_tcp->tcp_rcv_list = head;
+			if (peer_tcp->tcp_rcv_last_head == mp1)
+				peer_tcp->tcp_rcv_last_head = head;
+			freeb(mp1);
+		}
+		prev_head = head;
+		head = head->b_next;
+	}
+}
+
+/*
+ * Fusion output routine, called by tcp_output() and tcp_wput_proto().
+ */
+boolean_t
+tcp_fuse_output(tcp_t *tcp, mblk_t *mp, uint32_t send_size)
+{
+	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
+	queue_t *peer_rq;
+	uint_t max_unread;
+	boolean_t flow_stopped;
+	boolean_t urgent = (DB_TYPE(mp) != M_DATA);
+
+	ASSERT(tcp->tcp_fused);
+	ASSERT(peer_tcp != NULL && peer_tcp->tcp_loopback_peer == tcp);
+	ASSERT(tcp->tcp_connp->conn_sqp == peer_tcp->tcp_connp->conn_sqp);
+	ASSERT(DB_TYPE(mp) == M_DATA || DB_TYPE(mp) == M_PROTO ||
+	    DB_TYPE(mp) == M_PCPROTO);
+
+	peer_rq = peer_tcp->tcp_rq;
+	max_unread = peer_tcp->tcp_fuse_rcv_unread_hiwater;
+
+	/* If this connection requires IP, unfuse and use regular path */
+	if (TCP_LOOPBACK_IP(tcp) || TCP_LOOPBACK_IP(peer_tcp) ||
+	    IPP_ENABLED(IPP_LOCAL_OUT|IPP_LOCAL_IN)) {
+		TCP_STAT(tcp_fusion_aborted);
+		tcp_unfuse(tcp);
+		return (B_FALSE);
+	}
+
+	if (send_size == 0) {
+		freemsg(mp);
+		return (B_TRUE);
+	}
+
+	/*
+	 * Handle urgent data; we either send up SIGURG to the peer now
+	 * or do it later when we drain, in case the peer is detached
+	 * or if we're short of memory for M_PCSIG mblk.
+	 */
+	if (urgent) {
+		/*
+		 * We stop synchronous streams when we have urgent data
+		 * queued to prevent tcp_fuse_rrw() from pulling it.  If
+		 * for some reasons the urgent data can't be delivered
+		 * below, synchronous streams will remain stopped until
+		 * someone drains the tcp_rcv_list.
+		 */
+		TCP_FUSE_SYNCSTR_STOP(peer_tcp);
+		tcp_fuse_output_urg(tcp, mp);
+	}
+
+	mutex_enter(&peer_tcp->tcp_fuse_lock);
+	/*
+	 * Wake up and signal the peer; it is okay to do this before
+	 * enqueueing because we are holding the lock.  One of the
+	 * advantages of synchronous streams is the ability for us to
+	 * find out when the application performs a read on the socket,
+	 * by way of tcp_fuse_rrw() entry point being called.  Every
+	 * data that gets enqueued onto the receiver is treated as if
+	 * it has arrived at the receiving endpoint, thus generating
+	 * SIGPOLL/SIGIO for asynchronous socket just as in the strrput()
+	 * case.  However, we only wake up the application when necessary,
+	 * i.e. during the first enqueue.  When tcp_fuse_rrw() is called
+	 * it will send everything upstream.
+	 */
+	if (peer_tcp->tcp_direct_sockfs && !urgent &&
+	    !TCP_IS_DETACHED(peer_tcp)) {
+		if (peer_tcp->tcp_rcv_list == NULL)
+			STR_WAKEUP_SET(STREAM(peer_tcp->tcp_rq));
+		/* Update poll events and send SIGPOLL/SIGIO if necessary */
+		STR_SENDSIG(STREAM(peer_tcp->tcp_rq));
+	}
+
+	/*
+	 * Enqueue data into the peer's receive list; we may or may not
+	 * drain the contents depending on the conditions below.
+	 */
+	tcp_rcv_enqueue(peer_tcp, mp, send_size);
+
+	/* In case it wrapped around and also to keep it constant */
+	peer_tcp->tcp_rwnd += send_size;
+
+	/*
+	 * Exercise flow-control when needed; we will get back-enabled
+	 * in either tcp_accept_finish(), tcp_unfuse(), or tcp_fuse_rrw().
+	 * If tcp_direct_sockfs is on or if the peer endpoint is detached,
+	 * we emulate streams flow control by checking the peer's queue
+	 * size and high water mark; otherwise we simply use canputnext()
+	 * to decide if we need to stop our flow.
+	 *
+	 * The outstanding unread data block check does not apply for a
+	 * detached receiver; this is to avoid unnecessary blocking of the
+	 * sender while the accept is currently in progress and is quite
+	 * similar to the regular tcp.
+	 */
+	if (TCP_IS_DETACHED(peer_tcp) || max_unread == 0)
+		max_unread = UINT_MAX;
+
+	flow_stopped = tcp->tcp_flow_stopped;
+	if (!flow_stopped &&
+	    (((peer_tcp->tcp_direct_sockfs || TCP_IS_DETACHED(peer_tcp)) &&
+	    (peer_tcp->tcp_rcv_cnt >= peer_tcp->tcp_fuse_rcv_hiwater ||
+	    ++peer_tcp->tcp_fuse_rcv_unread_cnt >= max_unread)) ||
+	    (!peer_tcp->tcp_direct_sockfs &&
+	    !TCP_IS_DETACHED(peer_tcp) && !canputnext(peer_tcp->tcp_rq)))) {
+		tcp_setqfull(tcp);
+		flow_stopped = B_TRUE;
+		TCP_STAT(tcp_fusion_flowctl);
+		DTRACE_PROBE4(tcp__fuse__output__flowctl, tcp_t *, tcp,
+		    uint_t, send_size, uint_t, peer_tcp->tcp_rcv_cnt,
+		    uint_t, peer_tcp->tcp_fuse_rcv_unread_cnt);
+	} else if (flow_stopped &&
+	    TCP_UNSENT_BYTES(tcp) <= tcp->tcp_xmit_lowater) {
+		tcp_clrqfull(tcp);
+	}
+
+	loopback_packets++;
+	tcp->tcp_last_sent_len = send_size;
+
+	/* Need to adjust the following SNMP MIB-related variables */
+	tcp->tcp_snxt += send_size;
+	tcp->tcp_suna = tcp->tcp_snxt;
+	peer_tcp->tcp_rnxt += send_size;
+	peer_tcp->tcp_rack = peer_tcp->tcp_rnxt;
+
+	BUMP_MIB(&tcp_mib, tcpOutDataSegs);
+	UPDATE_MIB(&tcp_mib, tcpOutDataBytes, send_size);
+
+	BUMP_MIB(&tcp_mib, tcpInSegs);
+	BUMP_MIB(&tcp_mib, tcpInDataInorderSegs);
+	UPDATE_MIB(&tcp_mib, tcpInDataInorderBytes, send_size);
+
+	BUMP_LOCAL(tcp->tcp_obsegs);
+	BUMP_LOCAL(peer_tcp->tcp_ibsegs);
+
+	mutex_exit(&peer_tcp->tcp_fuse_lock);
+
+	DTRACE_PROBE2(tcp__fuse__output, tcp_t *, tcp, uint_t, send_size);
+
+	if (!TCP_IS_DETACHED(peer_tcp)) {
+		/*
+		 * Drain the peer's receive queue it has urgent data or if
+		 * we're not flow-controlled.  There is no need for draining
+		 * normal data when tcp_direct_sockfs is on because the peer
+		 * will pull the data via tcp_fuse_rrw().
+		 */
+		if (urgent || (!flow_stopped && !peer_tcp->tcp_direct_sockfs)) {
+			ASSERT(peer_tcp->tcp_rcv_list != NULL);
+			(void) tcp_fuse_rcv_drain(peer_rq, peer_tcp, NULL);
+			/*
+			 * If synchronous streams was stopped above due
+			 * to the presence of urgent data, re-enable it.
+			 */
+			if (urgent)
+				TCP_FUSE_SYNCSTR_RESUME(peer_tcp);
+		}
+	}
+	return (B_TRUE);
+}
+
+/*
+ * This routine gets called to deliver data upstream on a fused or
+ * previously fused tcp loopback endpoint; the latter happens only
+ * when there is a pending SIGURG signal plus urgent data that can't
+ * be sent upstream in the past.
+ */
+boolean_t
+tcp_fuse_rcv_drain(queue_t *q, tcp_t *tcp, mblk_t **sigurg_mpp)
+{
+	mblk_t *mp;
+#ifdef DEBUG
+	uint_t cnt = 0;
+#endif
+
+	ASSERT(tcp->tcp_loopback);
+	ASSERT(tcp->tcp_fused || tcp->tcp_fused_sigurg);
+	ASSERT(!tcp->tcp_fused || tcp->tcp_loopback_peer != NULL);
+	ASSERT(sigurg_mpp != NULL || tcp->tcp_fused);
+
+	/* No need for the push timer now, in case it was scheduled */
+	if (tcp->tcp_push_tid != 0) {
+		(void) TCP_TIMER_CANCEL(tcp, tcp->tcp_push_tid);
+		tcp->tcp_push_tid = 0;
+	}
+	/*
+	 * If there's urgent data sitting in receive list and we didn't
+	 * get a chance to send up a SIGURG signal, make sure we send
+	 * it first before draining in order to ensure that SIOCATMARK
+	 * works properly.
+	 */
+	if (tcp->tcp_fused_sigurg) {
+		/*
+		 * sigurg_mpp is normally NULL, i.e. when we're still
+		 * fused and didn't get here because of tcp_unfuse().
+		 * In this case try hard to allocate the M_PCSIG mblk.
+		 */
+		if (sigurg_mpp == NULL &&
+		    (mp = allocb(1, BPRI_HI)) == NULL &&
+		    (mp = allocb_tryhard(1)) == NULL) {
+			/* Alloc failed; try again next time */
+			tcp->tcp_push_tid = TCP_TIMER(tcp, tcp_push_timer,
+			    MSEC_TO_TICK(tcp_push_timer_interval));
+			return (B_TRUE);
+		} else if (sigurg_mpp != NULL) {
+			/*
+			 * Use the supplied M_PCSIG mblk; it means we're
+			 * either unfused or in the process of unfusing,
+			 * and the drain must happen now.
+			 */
+			mp = *sigurg_mpp;
+			*sigurg_mpp = NULL;
+		}
+		ASSERT(mp != NULL);
+
+		tcp->tcp_fused_sigurg = B_FALSE;
+		/* Send up the signal */
+		DB_TYPE(mp) = M_PCSIG;
+		*mp->b_wptr++ = (uchar_t)SIGURG;
+		putnext(q, mp);
+		/*
+		 * Let the regular tcp_rcv_drain() path handle
+		 * draining the data if we're no longer fused.
+		 */
+		if (!tcp->tcp_fused)
+			return (B_FALSE);
+	}
+
+	/*
+	 * In the synchronous streams case, we generate SIGPOLL/SIGIO for
+	 * each M_DATA that gets enqueued onto the receiver.  At this point
+	 * we are about to drain any queued data via putnext().  In order
+	 * to avoid extraneous signal generation from strrput(), we set
+	 * STRGETINPROG flag at the stream head prior to the draining and
+	 * restore it afterwards.  This masks out signal generation only
+	 * for M_DATA messages and does not affect urgent data.
+	 */
+	if (tcp->tcp_direct_sockfs)
+		strrput_sig(q, B_FALSE);
+
+	/* Drain the data */
+	while ((mp = tcp->tcp_rcv_list) != NULL) {
+		tcp->tcp_rcv_list = mp->b_next;
+		mp->b_next = NULL;
+#ifdef DEBUG
+		cnt += msgdsize(mp);
+#endif
+		putnext(q, mp);
+		TCP_STAT(tcp_fusion_putnext);
+	}
+
+	if (tcp->tcp_direct_sockfs)
+		strrput_sig(q, B_TRUE);
+
+	ASSERT(cnt == tcp->tcp_rcv_cnt);
+	tcp->tcp_rcv_last_head = NULL;
+	tcp->tcp_rcv_last_tail = NULL;
+	tcp->tcp_rcv_cnt = 0;
+	tcp->tcp_fuse_rcv_unread_cnt = 0;
+	tcp->tcp_rwnd = q->q_hiwat;
+
+	return (B_TRUE);
+}
+
+/*
+ * Synchronous stream entry point for sockfs to retrieve
+ * data directly from tcp_rcv_list.
+ */
+int
+tcp_fuse_rrw(queue_t *q, struiod_t *dp)
+{
+	tcp_t *tcp = Q_TO_CONN(q)->conn_tcp;
+	mblk_t *mp;
+
+	mutex_enter(&tcp->tcp_fuse_lock);
+	/*
+	 * If someone had turned off tcp_direct_sockfs or if synchronous
+	 * streams is temporarily disabled, we return EBUSY.  This causes
+	 * strget() to dequeue data from the stream head instead.
+	 */
+	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped) {
+		mutex_exit(&tcp->tcp_fuse_lock);
+		TCP_STAT(tcp_fusion_rrw_busy);
+		return (EBUSY);
+	}
+
+	if ((mp = tcp->tcp_rcv_list) != NULL) {
+		tcp_t *peer_tcp = tcp->tcp_loopback_peer;
+
+		DTRACE_PROBE3(tcp__fuse__rrw, tcp_t *, tcp,
+		    uint32_t, tcp->tcp_rcv_cnt, ssize_t, dp->d_uio.uio_resid);
+
+		tcp->tcp_rcv_list = NULL;
+		TCP_STAT(tcp_fusion_rrw_msgcnt);
+
+		/*
+		 * At this point nothing should be left in tcp_rcv_list.
+		 * The only possible case where we would have a chain of
+		 * b_next-linked messages is urgent data, but we wouldn't
+		 * be here if that's true since urgent data is delivered
+		 * via putnext() and synchronous streams is stopped until
+		 * tcp_fuse_rcv_drain() is finished.
+		 */
+		ASSERT(DB_TYPE(mp) == M_DATA && mp->b_next == NULL);
+
+		tcp->tcp_rcv_last_head = NULL;
+		tcp->tcp_rcv_last_tail = NULL;
+		tcp->tcp_rcv_cnt = 0;
+		tcp->tcp_fuse_rcv_unread_cnt = 0;
+
+		if (peer_tcp->tcp_flow_stopped) {
+			tcp_clrqfull(peer_tcp);
+			TCP_STAT(tcp_fusion_backenabled);
+		}
+	}
+
+	/*
+	 * Either we just dequeued everything or we get here from sockfs
+	 * and have nothing to return; in this case clear RSLEEP.
+	 */
+	ASSERT(tcp->tcp_rcv_last_head == NULL);
+	ASSERT(tcp->tcp_rcv_last_tail == NULL);
+	ASSERT(tcp->tcp_rcv_cnt == 0);
+	ASSERT(tcp->tcp_fuse_rcv_unread_cnt == 0);
+	STR_WAKEUP_CLEAR(STREAM(q));
+
+	mutex_exit(&tcp->tcp_fuse_lock);
+	dp->d_mp = mp;
+	return (0);
+}
+
+/*
+ * Synchronous stream entry point used by certain ioctls to retrieve
+ * information about or peek into the tcp_rcv_list.
+ */
+int
+tcp_fuse_rinfop(queue_t *q, infod_t *dp)
+{
+	tcp_t	*tcp = Q_TO_CONN(q)->conn_tcp;
+	mblk_t	*mp;
+	uint_t	cmd = dp->d_cmd;
+	int	res = 0;
+	int	error = 0;
+	struct stdata *stp = STREAM(q);
+
+	mutex_enter(&tcp->tcp_fuse_lock);
+	/* If shutdown on read has happened, return nothing */
+	mutex_enter(&stp->sd_lock);
+	if (stp->sd_flag & STREOF) {
+		mutex_exit(&stp->sd_lock);
+		goto done;
+	}
+	mutex_exit(&stp->sd_lock);
+
+	/*
+	 * It is OK not to return an answer if tcp_rcv_list is
+	 * currently not accessible.
+	 */
+	if (!tcp->tcp_direct_sockfs || tcp->tcp_fuse_syncstr_stopped ||
+	    (mp = tcp->tcp_rcv_list) == NULL)
+		goto done;
+
+	if (cmd & INFOD_COUNT) {
+		/*
+		 * We have at least one message and
+		 * could return only one at a time.
+		 */
+		dp->d_count++;
+		res |= INFOD_COUNT;
+	}
+	if (cmd & INFOD_BYTES) {
+		/*
+		 * Return size of all data messages.
+		 */
+		dp->d_bytes += tcp->tcp_rcv_cnt;
+		res |= INFOD_BYTES;
+	}
+	if (cmd & INFOD_FIRSTBYTES) {
+		/*
+		 * Return size of first data message.
+		 */
+		dp->d_bytes = msgdsize(mp);
+		res |= INFOD_FIRSTBYTES;
+		dp->d_cmd &= ~INFOD_FIRSTBYTES;
+	}
+	if (cmd & INFOD_COPYOUT) {
+		mblk_t *mp1;
+		int n;
+
+		if (DB_TYPE(mp) == M_DATA) {
+			mp1 = mp;
+		} else {
+			mp1 = mp->b_cont;
+			ASSERT(mp1 != NULL);
+		}
+
+		/*
+		 * Return data contents of first message.
+		 */
+		ASSERT(DB_TYPE(mp1) == M_DATA);
+		while (mp1 != NULL && dp->d_uiop->uio_resid > 0) {
+			n = MIN(dp->d_uiop->uio_resid, MBLKL(mp1));
+			if (n != 0 && (error = uiomove((char *)mp1->b_rptr, n,
+			    UIO_READ, dp->d_uiop)) != 0) {
+				goto done;
+			}
+			mp1 = mp1->b_cont;
+		}
+		res |= INFOD_COPYOUT;
+		dp->d_cmd &= ~INFOD_COPYOUT;
+	}
+done:
+	mutex_exit(&tcp->tcp_fuse_lock);
+
+	dp->d_res |= res;
+
+	return (error);
+}
+
+/*
+ * Enable synchronous streams on a fused tcp loopback endpoint.
+ */
+static void
+tcp_fuse_syncstr_enable(tcp_t *tcp)
+{
+	queue_t *rq = tcp->tcp_rq;
+	struct stdata *stp = STREAM(rq);
+
+	/* We can only enable synchronous streams for sockfs mode */
+	tcp->tcp_direct_sockfs = tcp->tcp_issocket && do_tcp_direct_sockfs;
+
+	if (!tcp->tcp_direct_sockfs)
+		return;
+
+	mutex_enter(&stp->sd_lock);
+	mutex_enter(QLOCK(rq));
+
+	/*
+	 * We replace our q_qinfo with one that has the qi_rwp entry point.
+	 * Clear SR_SIGALLDATA because we generate the equivalent signal(s)
+	 * for every enqueued data in tcp_fuse_output().
+	 */
+	rq->q_qinfo = &tcp_loopback_rinit;
+	rq->q_struiot = tcp_loopback_rinit.qi_struiot;
+	stp->sd_struiordq = rq;
+	stp->sd_rput_opt &= ~SR_SIGALLDATA;
+
+	mutex_exit(QLOCK(rq));
+	mutex_exit(&stp->sd_lock);
+}
+
+/*
+ * Disable synchronous streams on a fused tcp loopback endpoint.
+ */
+static void
+tcp_fuse_syncstr_disable(tcp_t *tcp)
+{
+	queue_t *rq = tcp->tcp_rq;
+	struct stdata *stp = STREAM(rq);
+
+	if (!tcp->tcp_direct_sockfs)
+		return;
+
+	mutex_enter(&stp->sd_lock);
+	mutex_enter(QLOCK(rq));
+
+	/*
+	 * Reset q_qinfo to point to the default tcp entry points.
+	 * Also restore SR_SIGALLDATA so that strrput() can generate
+	 * the signals again for future M_DATA messages.
+	 */
+	rq->q_qinfo = &tcp_rinit;
+	rq->q_struiot = tcp_rinit.qi_struiot;
+	stp->sd_struiordq = NULL;
+	stp->sd_rput_opt |= SR_SIGALLDATA;
+	tcp->tcp_direct_sockfs = B_FALSE;
+
+	mutex_exit(QLOCK(rq));
+	mutex_exit(&stp->sd_lock);
+}
+
+/*
+ * Enable synchronous streams on a pair of fused tcp endpoints.
+ */
+void
+tcp_fuse_syncstr_enable_pair(tcp_t *tcp)
+{
+	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
+
+	ASSERT(tcp->tcp_fused);
+	ASSERT(peer_tcp != NULL);
+
+	tcp_fuse_syncstr_enable(tcp);
+	tcp_fuse_syncstr_enable(peer_tcp);
+}
+
+/*
+ * Allow or disallow signals to be generated by strrput().
+ */
+static void
+strrput_sig(queue_t *q, boolean_t on)
+{
+	struct stdata *stp = STREAM(q);
+
+	mutex_enter(&stp->sd_lock);
+	if (on)
+		stp->sd_flag &= ~STRGETINPROG;
+	else
+		stp->sd_flag |= STRGETINPROG;
+	mutex_exit(&stp->sd_lock);
+}
+
+/*
+ * Disable synchronous streams on a pair of fused tcp endpoints and drain
+ * any queued data; called either during unfuse or upon transitioning from
+ * a socket to a stream endpoint due to _SIOCSOCKFALLBACK.
+ */
+void
+tcp_fuse_disable_pair(tcp_t *tcp, boolean_t unfusing)
+{
+	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
+
+	ASSERT(tcp->tcp_fused);
+	ASSERT(peer_tcp != NULL);
+
+	/*
+	 * We need to prevent tcp_fuse_rrw() from entering before
+	 * we can disable synchronous streams.
+	 */
+	TCP_FUSE_SYNCSTR_STOP(tcp);
+	TCP_FUSE_SYNCSTR_STOP(peer_tcp);
+
+	/*
+	 * Drain any pending data; the detached check is needed because
+	 * we may be called as a result of a tcp_unfuse() triggered by
+	 * tcp_fuse_output().  Note that in case of a detached tcp, the
+	 * draining will happen later after the tcp is unfused.  For non-
+	 * urgent data, this can be handled by the regular tcp_rcv_drain().
+	 * If we have urgent data sitting in the receive list, we will
+	 * need to send up a SIGURG signal first before draining the data.
+	 * All of these will be handled by the code in tcp_fuse_rcv_drain()
+	 * when called from tcp_rcv_drain().
+	 */
+	if (!TCP_IS_DETACHED(tcp)) {
+		(void) tcp_fuse_rcv_drain(tcp->tcp_rq, tcp,
+		    (unfusing ? &tcp->tcp_fused_sigurg_mp : NULL));
+	}
+	if (!TCP_IS_DETACHED(peer_tcp)) {
+		(void) tcp_fuse_rcv_drain(peer_tcp->tcp_rq, peer_tcp,
+		    (unfusing ? &peer_tcp->tcp_fused_sigurg_mp : NULL));
+	}
+
+	/* Lift up any flow-control conditions */
+	if (tcp->tcp_flow_stopped) {
+		tcp_clrqfull(tcp);
+		TCP_STAT(tcp_fusion_backenabled);
+	}
+	if (peer_tcp->tcp_flow_stopped) {
+		tcp_clrqfull(peer_tcp);
+		TCP_STAT(tcp_fusion_backenabled);
+	}
+
+	/* Disable synchronous streams */
+	tcp_fuse_syncstr_disable(tcp);
+	tcp_fuse_syncstr_disable(peer_tcp);
+}
+
+/*
+ * Calculate the size of receive buffer for a fused tcp endpoint.
+ */
+size_t
+tcp_fuse_set_rcv_hiwat(tcp_t *tcp, size_t rwnd)
+{
+	ASSERT(tcp->tcp_fused);
+
+	/* Ensure that value is within the maximum upper bound */
+	if (rwnd > tcp_max_buf)
+		rwnd = tcp_max_buf;
+
+	/* Obey the absolute minimum tcp receive high water mark */
+	if (rwnd < tcp_sth_rcv_hiwat)
+		rwnd = tcp_sth_rcv_hiwat;
+
+	/*
+	 * Round up to system page size in case SO_RCVBUF is modified
+	 * after SO_SNDBUF; the latter is also similarly rounded up.
+	 */
+	rwnd = P2ROUNDUP_TYPED(rwnd, PAGESIZE, size_t);
+	tcp->tcp_fuse_rcv_hiwater = rwnd;
+	return (rwnd);
+}
+
+/*
+ * Calculate the maximum outstanding unread data block for a fused tcp endpoint.
+ */
+int
+tcp_fuse_maxpsz_set(tcp_t *tcp)
+{
+	tcp_t *peer_tcp = tcp->tcp_loopback_peer;
+	uint_t sndbuf = tcp->tcp_xmit_hiwater;
+	uint_t maxpsz = sndbuf;
+
+	ASSERT(tcp->tcp_fused);
+	ASSERT(peer_tcp != NULL);
+	ASSERT(peer_tcp->tcp_fuse_rcv_hiwater != 0);
+	/*
+	 * In the fused loopback case, we want the stream head to split
+	 * up larger writes into smaller chunks for a more accurate flow-
+	 * control accounting.  Our maxpsz is half of the sender's send
+	 * buffer or the receiver's receive buffer, whichever is smaller.
+	 * We round up the buffer to system page size due to the lack of
+	 * TCP MSS concept in Fusion.
+	 */
+	if (maxpsz > peer_tcp->tcp_fuse_rcv_hiwater)
+		maxpsz = peer_tcp->tcp_fuse_rcv_hiwater;
+	maxpsz = P2ROUNDUP_TYPED(maxpsz, PAGESIZE, uint_t) >> 1;
+
+	/*
+	 * Calculate the peer's limit for the number of outstanding unread
+	 * data block.  This is the amount of data blocks that are allowed
+	 * to reside in the receiver's queue before the sender gets flow
+	 * controlled.  It is used only in the synchronous streams mode as
+	 * a way to throttle the sender when it performs consecutive writes
+	 * faster than can be read.  The value is derived from SO_SNDBUF in
+	 * order to give the sender some control; we divide it with a large
+	 * value (16KB) to produce a fairly low initial limit.
+	 */
+	if (tcp_fusion_rcv_unread_min == 0) {
+		/* A value of 0 means that we disable the check */
+		peer_tcp->tcp_fuse_rcv_unread_hiwater = 0;
+	} else {
+		peer_tcp->tcp_fuse_rcv_unread_hiwater =
+		    MAX(sndbuf >> 14, tcp_fusion_rcv_unread_min);
+	}
+	return (maxpsz);
+}